ﻻ يوجد ملخص باللغة العربية
We address the concept of direct multiphoton multiple ionization in atoms exposed to intense, short wavelength radiation and explore the conditions under which such processes dominate over the sequential. Their contribution is shown to be quite robust, even under intensity fluctuations and interaction volume integration, and reasonable agreement with experimental data is also found.
A theoretical study of the intense-field multiphoton ionization of hydrogenlike systems is performed by solving the time-dependent Dirac equation within the dipole approximation. It is shown that the velocity-gauge results agree to the ones in length
We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short X-ray free electron laser pulses. The timing dynamics of the photoabsorption and
We demonstrate the controlled creation of a $mathrm{^{174}Yb^{2+}}$ ion by photo-ionizing $mathrm{^{174}Yb^+}$ with weak continuous-wave lasers at ultraviolet wavelengths. The photo-ionization is performed by resonantly exciting transitions of the $m
We investigate the role of nuclear motion and strong-field-induced electronic couplings during the double ionization of deuterated water using momentum-resolved coincidence spectroscopy. By examining the three-body dicationic dissociation channel, D$
Multiphoton ionization of helium is investigated in the superintense field regime, with particular emphasis on the role of the electron-electron interaction in the ionization and stabilization dynamics. To accomplish this, we solve ab initio the time