ترغب بنشر مسار تعليمي؟ اضغط هنا

The dark energy effect as manifestation of the signal propagation features in expanding Universe

38   0   0.0 ( 0 )
 نشر من قبل Tomilchik Lev
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.M.Tomilchik




اسأل ChatGPT حول البحث

The formula describing the explicit red-shift dependence for the distance covered by a signal in the expanding space, and also the expressions for Hubble law have been derived directly from the conformal group transformations taking into account the light-cone equation. The obtained relations are associated with the luminosity distance represented as an explicit function of the red shift involving no other parameters but the scaling factor $c H^{-1}_0$. These relations represent in a pure kinematical way and in a complete agreement with observations, the revealed transition of the Metagalaxy to accelerated expansion (the dark energy effect).

قيم البحث

اقرأ أيضاً

This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives large negative pressure which acts as antigravity. We consider phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to exploration of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same masses is impossible unless both of them are at rest and suddenly start moving with the opposite velocities and kinetic energies. This effect is a classic analogue of a quantum mechanical particle pair creation in a strong electric field or in physical vacuum.
96 - L.M. Tomilchik 2007
The description of the cosmological expansion and its possible local manifestations via treating the proper conformal transformations as a coordinate transformation from a comoving Lorentz reference frame (RF) to an uniformly accelerated RF is given. The explicit form of the conformal deformation of time is established. The expression defining the location cosmological distance in the form of simple function on the red shift is obtained. By coupling it with the well known relativistic formula defining the relative velocity of the mutually moving apart source and receiver of the signal, the explicit analytic expression for the Hubble law is obtained. The connection between acceleration and the Hubble constant follows therefrom immediately. The expression for the conformal time deformation in the small time limit leads to the quadratic time nonlinearity. Being applied to describe the location-type experiments, this predicts the existence of the uniformly changing blue-shifted frequency drift. Phenomenon of the Pioneer Anomaly (PA) is treated as the first of such a kind of effects discovered experimentally. The obtained formulae reproduce the PA experimental data. The expression generalizing the conventional Hubble law reproduces the experimentally observed phenomenon which in the frame of the conventional cosmological paradigm is treated as the transition from the decelerated expansion of the Universe to the accelerated one.
We show that cosmological acceleration, Dark Energy (DE) effect is a consequence of the zero rest mass, conformal non-invariance of gravitons, and 1-loop finiteness of quantum gravity (QG). The effect is due to graviton-ghost condensates arising from the interference of quantum coherent states. The theory is constructed as follows: Faddeev-Popov-De Witt gauged path integral -> factorization of classical and quantum variables -> transition to the 1-loop approximation -> choice of ghost sector, satisfying 1-loop finiteness of the theory off the mass shell. The Bogolyubov-Born-Green-Kirckwood-Yvon (BBGKY) chain for the spectral function of gravitons renormalized by ghosts is used to build a theory of gravitons in the isotropic Universe. We found three exact solutions of the equations that describe virtual graviton and ghost condensates as well as condensates of instanton fluctuations. Exact solutions correspond to various condensates with different graviton-ghost compositions. The formalism of the BBGKY chain takes into account the contribution of non-relativistic matter in the formation of a common self-consistent gravitational field. It is shown that the era of non-relativistic matter dominance must be replaced by an era of dominance of graviton-ghost condensate. Pre-asymptotic state of DE is a condensate of virtual gravitons and ghosts with a constant conformal wavelength. The asymptotic state predicted by the theory is a graviton-ghost condensate of constant physical wavelength in the De Sitter space. Such DE phenomenon is presented in the form of the model that interpolates the exact solutions of equations of 1-loop QG. Processing of observational DE data extracted from the Hubble diagram for supernovae SNIa suggests that the graviton-ghost condensate is an adequate variable component of DE.
In this paper, we have presented a model of the FLRW universe filled with matter and dark energy fluids, by assuming an ansatz that deceleration parameter is a linear function of the Hubble constant. This results in a time-dependent DP having deceler ating-accelerating transition phase of the universe. This is a quintessence model $omega_{(de)}geq -1$. The quintessence phase remains for the period $(0 leq z leq 0.5806)$. The model is shown to satisfy current observational constraints. Various cosmological parameters relating to the history of the universe have been investigated.
We discuss the exact solutions of brane universes and the results indicate the Friedmann equations on the branes are modified with a new density term. Then, we assume the new term as the density of dark energy. Using Wetterichs parametrization equati on of state (EOS) of dark energy, we obtain the new term varies with the red-shift z. Finally, the evolutions of the mass density parameter $Omega_2$, dark energy density parameter $Omega_x$ and deceleration parameter q_2 are studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا