ﻻ يوجد ملخص باللغة العربية
We discuss two striking Large Hadron Collider (LHC) signatures of the constrained version of the exceptional supersymmetric standard model (cE6SSM), based on a universal high energy soft scalar mass m_0, soft trilinear coupling A_0 and soft gaugino mass M_{1/2}. The first signature we discuss is that of light exotic colour triplet charge 1/3 fermions, which we refer to as D-fermions. We calculate the LHC production cross section of D-fermions, and discuss their decay patterns. Secondly we discuss the E6 type U(1)_N spin-1 Z gauge boson and show how it may decay into exotic states, increasing its width and modifying the line shape of the dilepton final state. We illustrate these features using two representative cE6SSM benchmark points, including an early LHC discovery point, giving the Feynman rules and numerical values for the relevant couplings in order to facilitate further studies.
We propose and study a constrained version of the Exceptional Supersymmetric Standard Model (E6SSM), which we call the cE6SSM, based on a universal high energy scalar mass m_0, trilinear scalar coupling A_0 and gaugino mass M_{1/2}. We derive the Ren
The Exceptional Supersymmetric Standard Model (E$_6$SSM) provides a low energy alternative to the MSSM, with an extra gauged U(1)$_N$ symmetry, solving the $mu$-problem of the MSSM. Inspired by the possible embedding into an E$_6$ GUT, the matter con
Local supersymmetry (SUSY) provides an attractive framework for the incorporation of gravity and unification of gauge interactions within Grand Unified Theories (GUTs). Its breakdown can lead to a variety of models with softly broken SUSY at low ener
We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming unive
Supersymmetry is under pressure from LHC searches requiring colored superpartners to be heavy. We demonstrate R-parity violating spectra for which the dominant signatures are not currently well searched for at the LHC. In such cases, the bounds can b