ﻻ يوجد ملخص باللغة العربية
We summarize the results of our long-running campaign to help understand the nature of high-mass X-ray binaries (HMXBs), emphasizing recent Suzaku observations of IGR J16207-5129 and IGR J17391-3021. Thanks to the expanding ranks of HMXBs in our Galaxy, we are able to perform more reliable statistical analyses on the three currently-known sub-classes of HMXB: those with supergiant companions (SGXBs); those with Be companions (BEXBs); and the enigmatic Supergiant Fast X-ray Transients (SFXTs). We discuss new diagnostic tools, akin to the Corbet diagram, in which HMXBs tend to segregate based on their dominant accretion mechanism. We show how SFXTs span across the divided populations of BEXBs and SGXBs, bolstering the intriguing possibility that some SFXTs represent an evolutionary link. The use of HMXBs as tracers of recent massive star formation is revisited as we present the first ever spatial correlation function for HMXBs and OB star-forming complexes. Our results indicate that at distances less than a few kpc from a given HMXB, it is more likely to have neighbors that are known massive-star forming regions as opposed to objects drawn from random distributions. The characteristic scale of the correlation function holds valuable clues to HMXB evolutionary timescales.
The aim of this review is to describe the nature, formation and evolution of the three kinds of high mass X-ray binary (HMXB) population: i. systems hosting Be stars (BeHMXBs), ii. systems accreting the stellar wind of supergiant stars (sgHMXBs), and
In this review I first describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. I then report on the discovery of
High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the tra
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or
We present photometric observations of the field around the optical counterparts of high-mass X-ray binaries. Our aim is to study the long-term photometric variability in correlation with their X-ray activity and derive a set of secondary standard st