ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative approaches to information recovery from black holes

38   0   0.0 ( 0 )
 نشر من قبل Vijay Balasubramanian
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The evaporation of black holes into apparently thermal radiation poses a serious conundrum for theoretical physics: at face value, it appears that in the presence of a black hole quantum evolution is non-unitary and destroys information. This information loss paradox has its seed in the presence of a horizon causally separating the interior and asymptotic regions in a black hole spacetime. A quantitative resolution of the paradox could take several forms: (a) a precise argument that the underlying quantum theory is unitary, and that information loss must be an artifact of approximations in the derivation of black hole evaporation, (b) an explicit construction showing how information can be recovered by the asymptotic observer, (c) a demonstration that the causal disconnection of the black hole interior from infinity is an artifact of the semiclassical approximation. This review summarizes progress on all these fronts.

قيم البحث

اقرأ أيضاً

We show that the apparent horizon and the region near $r=0$ of an evaporating charged, rotating black hole are timelike. It then follows that for black holes in nature, which invariably have some rotation, have a channel, via which classical or quant um information can escape to the outside, while the black hole shrinks in size. We discuss implications for the information loss problem.
We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dy namics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.
We study $widehat{text{CGHS}}$ gravity, a variant of the matterless Callan-Giddings-Harvey-Strominger model. We show that it describes a universal sector of the near horizon perturbations of non-extremal black holes in higher dimensions. In many resp ects this theory can be viewed as a flat space analog of Jackiw-Teitelboim gravity. The result for the Euclidean path integral implies that $widehat{text{CGHS}}$ is dual to a Gaussian ensemble that we describe in detail. The simplicity of this theory allows us to compute exact quantities such as the quenched free energy and provides a useful playground to study baby universes, averages and factorization. We also give evidence for the existence of a non-perturbative completion in terms of a matrix model. Finally, flat wormhole solutions are discussed.
We derive exact relations to all orders in the $alpha$ expansion for the charges of a bound system of heterotic strings, solitonic 5-branes and, optionally, a Kaluza-Klein monopole. The expressions, which differ from those of the zeroth-order supergr avity approximation, coincide with the values obtained when only the corrections of quadratic order in curvature are included. Our computation relies on the consistency of string theory as a quantum theory of gravity; the relations follow from the matching of the Wald entropy with the microscopic degeneracy. In the heterotic frame, the higher-curvature terms behave as delocalized sources that introduce a shift between near-horizon and asymptotic charges. On the other hand, when described in terms of lower-dimensional effective fields, the solution carries constant charges over space which coincide with those of the asymptotic heterotic fields. In addition, we describe why the Gauss-Bonnet term, which only captures a subset of the relevant corrections of quadratic order in curvature, in some cases succeeds to reproduce the correct value for the Wald entropy, while fails in others.
We develop a primordial black hole (PBH) production mechanism, deriving non-Gaussian tails from interacting quantum fields during early universe inflation. The multi-field potential landscape may contain relatively flat directions, as a result of ene rgetically favorable adjustments of fields coupled to the inflaton. Such additional fields do not contribute to CMB fluctuations given a sufficient large-scale decay, related to a gap in the critical exponents computed using stochastic methods. Along such directions transverse to the inflaton, the field makes rare jumps to large values. Mixing with the inflaton leads to a substantial tail in the resulting probability distribution for the primordial perturbations. Incorporating a large number of flavors of fields ensures theoretical control of radiative corrections and a substantial abundance. This generates significant PBH production for a reasonable window of parameters, with the mass range determined by the time period of mixing and the inflationary Hubble scale. We analyze a particular model in detail, and then comment on a broader family of models in this class which suggests a mechanism for primordial seeds for early super-massive black holes in the universe. Along the way, we encounter an analytically tractable example of stochastic dynamics and provide some representative calculations of its correlations and probability distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا