ﻻ يوجد ملخص باللغة العربية
We report an experimental demonstration of thermal tuning of resonance frequency in a planar terahertz metamaterial consisting of a gold split-ring resonator array fabricated on a bulk single crystal strontium titanate (SrTiO3) substrate. Cooling the metamaterial starting from 409 K down to 150 K causes about 50% shift in resonance frequency as compare to its room temperature resonance, and there is very little variation in resonance strength. The resonance shift is due to the temperature-dependent refractive index (or the dielectric constant) of the strontium titanate. The experiment opens up avenues for designing tunable terahertz devices by exploiting the temperature sensitive characteristic of high dielectric constant substrates and complex metal oxide materials.
Diamond is a material of choice in the pursuit of integrated quantum photonic technologies. So far, the majority of photonic devices fabricated from diamond, are made from (100)-oriented crystals. In this work, we demonstrate a methodology for the fa
This work theoretically and analytically demonstrates the magnetic field-induced spectral radiative properties of photonic metamaterials incorporating both Indium Antimonide (InSb) and Tungsten (W) in the terahertz (THz) frequency regime. We have var
We report measurements of the thermal Hall effect in single crystals of both pristine and isotopically substituted strontium titanate. We discovered a two orders of magnitude difference in the thermal Hall conductivity between $SrTi^{16}O_3$ and $^{1
We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on ultrathin NbN films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magne
Strontium titanate (SrTiO$_3$) is a foundational material in the emerging field of complex oxide electronics. While its electronic and optical properties have been studied for decades, SrTiO$_3$ has recently become a renewed materials research focus