ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Gravitational Wave Background from Neutron Star r-mode Instability Revisited

142   0   0.0 ( 0 )
 نشر من قبل Zong-Hong Zhu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the possibility and detectability of a stochastic gravitational wave background (SGWB) produced by a cosmological population of newborn neutron stars (NSs) with r-mode instabilities. We show that the resultant SGWB is insensitive to the choice of CSFR models, but depends strongly on the evolving behavior of CSFR at low redshifts. Our results show that the dimensionless energy density $Omega_{rm{GW}}$ could have a peak amplitude of $simeq (1-3.5) times10^{-8}$ in the frequency range $(200-1000)$~Hz. However, such a high mode amplitude is unrealistic as it is known that the maximum value is much smaller and at most $10^{-2}$. A realistic estimate of $Omega_{rm{GW}}$ should be at least 4 orders of magnitude lower ($sim 10^{-12}$), which leads to a pessimistic outlook for the detection of r-mode background. We consider different pairs of terrestrial interferometers (IFOs) and compare two approaches to combine multiple IFOs in order to evaluate the detectability of this GW background. Constraints on the total emitted GW energy associated with this mechanism to produce a detectable stochastic background are $sim 10^{-3} M_{odot} c^2$ for two co-located advanced LIGO detectors, and $2 times 10^{-5} M_{odot} c^2$ for two Einstein Telescopes. These constraints may also be applicable to alternative GW emission mechanisms related to oscillations or instabilities in NSs depending on the frequency band where most GWs are emitted.



قيم البحث

اقرأ أيضاً

We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac k reaction, calculate the average spectrum of gravitational waves emitted by the string population at any given time, and propagate it through a standard model cosmology to find the stochastic background today. We take into account all known effects, including changes in the number of cosmological relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we might never have observed.
206 - Tania Regimbau 2011
A gravitational wave stochastic background of astrophysical origin may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constrains on the physica l properties of compact objects, the initial mass function or the star formation history. On the other hand, it could be a noise that would mask the stochastic background of cosmological origin. We review the main astrophysical processes able to produce a stochastic background and discuss how it may differ from the primordial contribution by its statistical properties. Current detection methods are also presented.
Primordial Black Holes (PBH) from peaks in the curvature power spectrum could constitute today an important fraction of the Dark Matter in the Universe. At horizon reentry, during the radiation era, order one fluctuations collapse gravitationally to form black holes and, at the same time, generate a stochastic background of gravitational waves coming from second order anisotropic stresses in matter. We study the amplitude and shape of this background for several phenomenological models of the curvature power spectrum that can be embedded in waterfall hybrid inflation, axion, domain wall, and boosts of PBH formation at the QCD transition. For a broad peak or a nearly scale invariant spectrum, this stochastic background is generically enhanced by about one order of magnitude, compared to a sharp feature. As a result, stellar-mass PBH from Gaussian fluctuations with a wide mass distribution are already in strong tension with the limits from Pulsar Timing Arrays, if they constitute a non negligible fraction of the Dark Matter. But this result is mitigated by the uncertainties on the curvature threshold leading to PBH formation. LISA will have the sensitivity to detect or rule out light PBH down to $10^{-14} M_{odot}$. Upcoming runs of LIGO/Virgo and future interferometers such as the Einstein Telescope will increase the frequency lever arm to constrain PBH from the QCD transition. Ultimately, the future SKA Pulsar Timing Arrays could probe the existence of even a single stellar-mass PBH in our Observable Universe.
A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of Delta theta ~ 10 mu as would yield a sensitivity level of Omega_gw ~ (Delta theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.
A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We find that the lensing due to gravitational waves(GW) is more efficient as compared to lensing due to scalar density perturb ations. Though the effect of lensing due to GW is found to effect all the four CMB power spectra, its effect is most prominently seen in the CMB polarization power spectra. This suggests that the measurements of the CMB angular power spectra could be used to constraining the energy density ($Omega_{GW}$) of the SGBW. In our analysis we find that the most stringent constraints on $Omega_{GW}$ are due to measurements of the angular power spectra of CMB temperature anisotropies. We show that in the future it will be possible to place more stringent bounds on $Omega_{GW}$ using improved upper limits or detections of the angular power spectra of the B-modes of CMB polarization at large multipoles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا