ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Window into Stochastic Gravitational Wave Background

124   0   0.0 ( 0 )
 نشر من قبل Aditya Rotti
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A stochastic gravitational wave background (SGWB) would gravitationally lens the cosmic microwave background (CMB) photons. We find that the lensing due to gravitational waves(GW) is more efficient as compared to lensing due to scalar density perturbations. Though the effect of lensing due to GW is found to effect all the four CMB power spectra, its effect is most prominently seen in the CMB polarization power spectra. This suggests that the measurements of the CMB angular power spectra could be used to constraining the energy density ($Omega_{GW}$) of the SGBW. In our analysis we find that the most stringent constraints on $Omega_{GW}$ are due to measurements of the angular power spectra of CMB temperature anisotropies. We show that in the future it will be possible to place more stringent bounds on $Omega_{GW}$ using improved upper limits or detections of the angular power spectra of the B-modes of CMB polarization at large multipoles.



قيم البحث

اقرأ أيضاً

210 - Tania Regimbau 2011
A gravitational wave stochastic background of astrophysical origin may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity. Its detection would put very strong constrains on the physica l properties of compact objects, the initial mass function or the star formation history. On the other hand, it could be a noise that would mask the stochastic background of cosmological origin. We review the main astrophysical processes able to produce a stochastic background and discuss how it may differ from the primordial contribution by its statistical properties. Current detection methods are also presented.
A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of Delta theta ~ 10 mu as would yield a sensitivity level of Omega_gw ~ (Delta theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.
We do a complete calculation of the stochastic gravitational wave background to be expected from cosmic strings. We start from a population of string loops taken from simulations, smooth these by Lorentzian convolution as a model of gravitational bac k reaction, calculate the average spectrum of gravitational waves emitted by the string population at any given time, and propagate it through a standard model cosmology to find the stochastic background today. We take into account all known effects, including changes in the number of cosmological relativistic degrees of freedom at early times and the possibility that some energy is in rare bursts that we might never have observed.
Stochastic gravitational wave backgrounds, predicted in many models of the early universe and also generated by various astrophysical processes, are a powerful probe of the Universe. The spectral shape is key information to distinguish the origin of the background since different production mechanisms predict different shapes of the spectrum. In this paper, we investigate how precisely future gravitational wave detectors can determine the spectral shape using single and broken power-law templates. We consider the detector network of Advanced-LIGO, Advanced-Virgo and KAGRA and the space-based gravitational-wave detector DECIGO, and estimate the parameter space which could be explored by these detectors. We find that, when the spectrum changes its slope in the frequency range of the sensitivity, the broken power-law templates dramatically improve the $chi^2$ fit compared with the single power-law templates and help to measure the shape with a good precision.
We study the sensitivity of a pair of Einstein Telescopes (ET) (hypothetically located at the two sites currently under consideration for ET) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We focus on the $ell =0,2,4$ mul tipoles of an expansion of the SGWB in spherical harmonics, since the sensitivity to other multipoles is suppressed due to the fact that this pair of detector operates in a regime for which the product between the observed frequency and the distance between the two sites is much smaller than one. In this regime, the interferometer overlap functions for the anisotropic signal acquire very simple analytic expressions. These expressions can also be applied to any other pairs of interferometers (each one of arbitrary opening angle between its two arms) operating in this regime. Once the measurements at the vertices of the two sites are optimally combined, the sensitivity to the multipoles of the SGWB depends only on the latitude of the two sites, on the difference of their longitude, but not on the orientation of their arms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا