ترغب بنشر مسار تعليمي؟ اضغط هنا

Huge Seebeck coefficients in non-aqueous electrolytes

101   0   0.0 ( 0 )
 نشر من قبل Michel Roger
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Seeebeck coefficients of the non-aqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol and ethylene-glycol are measured in a temperature range from T=30 to T=45 C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or structure making effects of tetraalkylammonium ions on the structure of alcohols.

قيم البحث

اقرأ أيضاً

89 - Ivo Nezbeda 2016
Although aqueous electrolytes are among the most important solutions, the molecular simulation of their intertwined properties of chemical potentials, solubility and activity coefficients has remained a challenging problem, and has attracted consider able recent interest. In this perspectives review, we focus on the simplest case of aqueous sodium chloride at ambient conditions and discuss the two main factors that have impeded progress. The first is lack of consensus with respect to the appropriate methodology for force field (FF) development. We examine how most commonly used FFs have been developed, and emphasize the importance of distinguishing between Training Set Properties used to fit the FF parameters, and Test Set Properties, which are pure predictions of additional properties. The second is disagreement among solubility results obtained, even using identical FFs and thermodynamic conditions. Solubility calculations have been approached using both thermodynamic--based methods and direct molecular dynamics--based methods implementing coexisting solution and solid phases. Although convergence has been very recently achieved among results based on the former approach, there is as yet no general agreement with simulation results based on the latter methodology. We also propose a new method to directly calculate the electrolyte standard chemical potential in the Henry-Law ideality model. We conclude by making recommendations for calculating solubility, chemical potentials and activity coefficients, and outline a potential path for future progress.
Investigation into the physics of foaming has traditionally been focused on aqueous systems. Non-aqueous foams, by contrast, are not well understood, but have been the subject of a recent surge in interest motivated by the need to manage foaming acro ss industrial applications. In this review, we provide a comprehensive discussion of the current state-of-the-art methods for characterizing non-aqueous foams, with a critical evaluation of the advantages and limitations of each. Subsequently we present a concise overview of the current understanding of the mechanisms and methods used for stabilizing and destabilizing non-aqueous foams. We conclude the review by discussing open questions to guide future investigations.
Molecular dynamics simulations of aqueous electrolytes generally rely on empirical force fields, combining dispersion interactions - described by a truncated Lennard-Jones (LJ) potential - and electrostatic interactions - described by a Coulomb poten tial computed with a long-range solver. Recently, force fields using rescaled ionic charges (electronic continuum correction, ECC), possibly complemented with rescaling of LJ parameters (electronic continuum correction rescaled, ECCR), have shown promising results in bulk, but their performance at interfaces has been less explored. Here we started by exploring the impact of the LJ potential truncation on the surface tension of a sodium chloride aqueous solution. We show a discrepancy between the numerical predictions for truncated LJ interactions with a large cutoff and for untruncated LJ interactions computed with a long-range solver, which can bias comparison of force field predictions with experiments. Using a long-range solver for LJ interactions, we then show that an ionic charge rescaling factor chosen to correct long-range electrostatic interactions in bulk also describes accurately image charge repulsion at the liquid-vapor interface, and that the rescaling of LJ parameters in ECCR models - aimed at capturing local ion-ion and ion-water interactions in bulk - also describes well the formation of an ionic double layer at the liquid-vapor interface. Overall, these results suggest that the molecular modeling of aqueous electrolytes at interfaces would benefit from using long-range solvers for dispersion forces, and from using ECCR models, where the charge rescaling factor should be chosen to correct long-range electrostatic interactions.
This paper presents a combined theoretical and experimental investigation of aqueous near-neutral electrolytes based on chloride salts for rechargeable zinc-air batteries (ZABs). The resilience of near-neutral chloride electrolytes in air could exten d ZAB lifetime, but theory-based simulations predict that such electrolytes are vulnerable to other challenges including pH instability and the unwanted precipitation of mixed zinc hydroxide chloride products. In this work, we combine theory-based simulations with experimental methods such as full cell cycling, operando pH measurements, ex-situ XRD, SEM, and EDS characterization to investigate the performance of ZABs with aqueous chloride electrolytes. The experimental characterization of near-neutral ZAB cells observes the predicted pH instability and confirms the composition of the final discharge products. Steps to promote greater pH stability and control the precipitation of discharge products are proposed.
The performance of gold nanoparticles (NPs) in applications depends critically on the structure of the NP-solvent interface, at which the electrostatic surface polarization is one of the key characteristics that affects hydration, ionic adsorption, a nd electrochemical reactions. Here, we demonstrate significant effects of explicit metal polarizability on the solvation and electrostatic properties of bare gold NPs in aqueous electrolyte solutions of sodium salts of various anions (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, Nip$^-$(nitrophenolate), and 3- and 4-valent hexacyanoferrate (HCF)), using classical molecular dynamics simulations with a polarizable core-shell model of the gold atoms. We find considerable spatial heterogeneity of the polarization and electrostatic potentials on the NP surface, mediated by a highly facet-dependent structuring of the interfacial water molecules. Moreover, ion-specific, facet-dependent ion adsorption leads to large alterations of the interfacial polarization. Compared to non-polarizable NPs, polarizability modifies water local dipole densities only slightly, but has substantial effects on the electrostatic surface potentials, and leads to significant lateral redistributions of ions on the NP surface. Besides, interfacial polarization effects on the individual monovalent ions cancel out in the far field, and effective Debye-Huckel surface potentials remain essentially unaffected, as anticipated from continuum `image-charge concepts. Hence, the explicit charge response of metal NPs is crucial for the accurate description and interpretation of interfacial electrostatics (as, e.g., for charge transfer and interface polarization in catalysis and electrochemistry).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا