ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly Heterogeneous Polarization and Solvation of Gold Nanoparticles in Aqueous Electrolytes

422   0   0.0 ( 0 )
 نشر من قبل Zhujie Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The performance of gold nanoparticles (NPs) in applications depends critically on the structure of the NP-solvent interface, at which the electrostatic surface polarization is one of the key characteristics that affects hydration, ionic adsorption, and electrochemical reactions. Here, we demonstrate significant effects of explicit metal polarizability on the solvation and electrostatic properties of bare gold NPs in aqueous electrolyte solutions of sodium salts of various anions (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, Nip$^-$(nitrophenolate), and 3- and 4-valent hexacyanoferrate (HCF)), using classical molecular dynamics simulations with a polarizable core-shell model of the gold atoms. We find considerable spatial heterogeneity of the polarization and electrostatic potentials on the NP surface, mediated by a highly facet-dependent structuring of the interfacial water molecules. Moreover, ion-specific, facet-dependent ion adsorption leads to large alterations of the interfacial polarization. Compared to non-polarizable NPs, polarizability modifies water local dipole densities only slightly, but has substantial effects on the electrostatic surface potentials, and leads to significant lateral redistributions of ions on the NP surface. Besides, interfacial polarization effects on the individual monovalent ions cancel out in the far field, and effective Debye-Huckel surface potentials remain essentially unaffected, as anticipated from continuum `image-charge concepts. Hence, the explicit charge response of metal NPs is crucial for the accurate description and interpretation of interfacial electrostatics (as, e.g., for charge transfer and interface polarization in catalysis and electrochemistry).

قيم البحث

اقرأ أيضاً

Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally-efficient continuum solvation methodologies. We develop a model for the double lay er of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the Potential of Zero Charge (PZC), and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the Nonlinear Electrochemical Soft-Sphere solvation model (NESS) which both captures the capacitance features observed experimentally, and serves as a general-purpose continuum solvation model.
We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of $1$-$2$ nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, N ip$^-$(nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the Au-NPs: while sodium and some of the anions (e.g., Cl$^-$, HCF$^{3-}$) adsorb more at the `edgy (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF$_4$$^-$, PF$_6$$^-$, Nip$^-$) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip$^-$, which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially-resolved electrostatic potentials, as well as the far-field effective electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Huckel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between effective surface charge and potential. We find for all salts negative effective surface potentials in the range from $-10$ mV for NaCl down to about $-80$ mV for NaNip, consistent with typical experimental ranges for the zeta-potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the $pm 0.5$ V range.
This paper presents a combined theoretical and experimental investigation of aqueous near-neutral electrolytes based on chloride salts for rechargeable zinc-air batteries (ZABs). The resilience of near-neutral chloride electrolytes in air could exten d ZAB lifetime, but theory-based simulations predict that such electrolytes are vulnerable to other challenges including pH instability and the unwanted precipitation of mixed zinc hydroxide chloride products. In this work, we combine theory-based simulations with experimental methods such as full cell cycling, operando pH measurements, ex-situ XRD, SEM, and EDS characterization to investigate the performance of ZABs with aqueous chloride electrolytes. The experimental characterization of near-neutral ZAB cells observes the predicted pH instability and confirms the composition of the final discharge products. Steps to promote greater pH stability and control the precipitation of discharge products are proposed.
Lithium based deep eutectic solvents (DESs) are excellent candidates for eco-friendly electrolytes in lithium ion batteries. While some of these DES have shown promising results, a clear mechanism of lithium ion transport in DESs is not yet establish ed. This work reports the study on the solvation and transport of lithium in a DES made from lithium perchlorate and acetamide using Molecular Dynamics (MD) simulation and neutron scattering techniques. Based on hydrogen bonding (H-bonding) of acetamide with neighbouring molecules/ions, two states are largely prevalent: 1) acetamide molecules which are H-bonded to lithium ions (~ 36 %) and 2) acetamide molecules that are entirely free (~ 58%). Analysing their stochastic dynamics independently, it is observed that the long-range diffusion of the former is significantly slower than the latter one. This is also validated from the neutron scattering experiment on the same DES system. Further, the analysis the lithium dynamics shows that the diffusion of acetamide molecules in the first category is strongly coupled to that of lithium ions. On an average the lithium ions are H-bonded to ~ 3.2 acetamide molecules in their first solvation. These observations are further bolstered through the analysis of the H-bond correlation function between acetamide and lithium ions, which show that ~ 90% of lithium ionic transport is achieved by vehicular motion where the ions diffuse along with its first solvation shell. The findings of this work are an important advancement in understanding solvation and transport of lithium ion in DES.
Aqueous zinc-air batteries (ZABs) are a low-cost, safe, and sustainable technology for stationary energy storage. ZABs with pH-buffered near-neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at non-alkaline pH values. However, existing near-neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide-free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide-free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. XRD, SEM, and EDS measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long-term full cell cycling tests are performed, and RRDE measurements elucidate the mechanism of ORR and OER. Our analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc-based batteries, due to their Zn$^{2+}$ chelating and pH buffering properties. We discuss the remaining challenges including the electrochemical stability of the electrolyte components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا