ترغب بنشر مسار تعليمي؟ اضغط هنا

Micromegas for imaging hadronic calorimetry

148   0   0.0 ( 0 )
 نشر من قبل Jan Blaha
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent progress in R&D of the Micromegas detectors for hadronic calorimetry including new engineering-technical solutions, electronics development, and accompanying simulation studies with emphasis on the comparison of the physics performance of the analog and digital readout is described. The developed prototypes are with 2 bit digital readout to exploit the Micromegas proportional mode and thus improve the calorimeter linearity. In addition, measurements of detection efficiency, hit multiplicity, and energy shower profiles obtained during the exposure of small size prototypes to radioactive source quanta, cosmic particles and accelerator beams are reported. Eventually, the status of a large scale chamber (1{times}1 m2) are also presented with prospective towards the construction of a 1 m3 digital calorimeter consisting of 40 such chambers.



قيم البحث

اقرأ أيضاً

376 - Jose Repond 2014
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Fl ow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 x 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.
185 - Jose Repond 2011
This talk reviews the development of imaging calorimeters for the purpose of applying Particle Flow Algorithms (PFAs) to the measurement of hadronic jets at a future lepton collider. After a short introduction, the current status of PFA developments is presented, followed by a review of the major developments in electromagnetic and hadronic calorimetry.
Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which ar e currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of sim90 micrometers and a efficiency of ~98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of sim90 micrometers and a efficiency of sim98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.
The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate a Micromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkov-radiator front window, which produces sufficient UV photons to convert the ~100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ~50 primary photoelectrons, using a bulk Micromegas readout.
Precision physics at future colliders requires highly granular calorimeters to support the Particle Flow Approach for event reconstruction. This article presents a review of about 10 - 15 years of R&D, mainly conducted within the CALICE collaboration , for this novel type of detector. The performance of large scale prototypes in beam tests validate the technical concept of particle flow calorimeters. The comparison of test beam data with simulation, of e.g. hadronic showers, supports full detector studies and gives deeper insight into the structure of hadronic cascades than was possible previously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا