ترغب بنشر مسار تعليمي؟ اضغط هنا

Performances of Anode-resistive Micromegas for HL-LHC

243   0   0.0 ( 0 )
 نشر من قبل Joany Manjarr\\'es
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of sim90 micrometers and a efficiency of ~98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.Micromegas technology is a promising candidate to replace Atlas forward muon chambers -tracking and trigger- for future HL-LHC upgrade of the experiment. The increase on background and pile-up event probability requires detector performances which are currently under studies in intensive RD activities. We studied performances of four different resistive Micromegas detectors with different read-out strip pitches. These chambers were tested using sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500 micrometers we measure a resolution of sim90 micrometers and a efficiency of sim98%. The track angle effect on the efficiency was also studied. Our results show that resistive techniques induce no degradation on the efficiency or resolution, with respect to the standard Micromegas. In some configuration the resistive coating is able to reduce the discharge currents at least by a factor of 100.



قيم البحث

اقرأ أيضاً

With the tenfold luminosity increase envisaged at the HL-LHC, the background (photons, neutrons, ...) and the event pile-up probability are expected to increase in proportion in the different experiments, especially in the forward regions like, for i nstance, the muons chambers of the ATLAS detector. Detectors based on the Micromegas principle should be good alternatives for the detector upgrade in the HL-LHC framework because of a good spatial (<100 mum) and time (few ns) resolutions, high-rate capability, radiation hardness, good robustness and the possibility to build large areas. The aim of this study is to demonstrate that it is possible to reduce the discharge probability and protect the electronics by using a resistive anode plane in a high flux hadrons environment. Several prototypes of 10x10 cm2, with different pitches (0.5 to 2 mm) and different resistive layers have been tested at CERN (pi+@SPS). Several tests have been performed with a telescope at different voltages to assess the performances of the detectors in terms of position resolution and efficiency. The spark behaviour in these conditions has also been evaluated. Resistive coating has been shown to be a successful method to reduce the effect of sparks on the efficiency of micromegas. A good spatial resolution (~80 mum) can be reached with a resistive strip coating detector of 1mm pitch and a high efficiency (> 98%) can be achieved with resistive-anode micromegas detector. An X-rays irradiation has been also performed, showing no ageing effect after more than 21 days exposure and an integrated charge of almost 1C.
Resistive-anode Micromegas detectors are in development since several years, in an effort to solve the problem of sparks when working in high flux and high radiations environment like in the HL-LHC (ten times the luminosity of the LHC). They have bee n chosen as one of the technologies that will be part of the ATLAS New Small Wheel project (forward muon system). An ageing study is mandatory to assess their capabilities to handle the HL-LHC environment on a long-term period. A prototype has been exposed to several types of irradiations (X-rays, cold neutrons, 60 Co gammas) up to an equivalent HL-LHC time of more than five years without showing any degradation of the performances in terms of gain and energy resolution. Beam test studies took place in October 2012 to assess the tracking performances (efficiency, spatial resolution,...). Results of ageing studies and beam test performances are reported in this paper.
Resistive-anode micromegas detectors are in development since several years, in an effort to solve the problem of sparks when working at high flux and high ionizing radiation like in the HL-LHC (up to ten times the luminosity of the LHC). They have b een chosen as one of the technologies that will be part of the ATLAS New Small Wheel project (forward muon system). An ageing study is mandatory to assess their capabilities to handle the HL-LHC environment on a long-term period. A prototype has been exposed to several types of irradiation (X-rays, cold neutrons, $^{60}$Co gammas and alphas) above the equivalent charge produced at the detector in five HL-LHC running years without showing any degradation of the performances in terms of gain and energy resolution. This study has been completed with the characterization of the tracking performances in terms of efficiency and spatial resolution, verifying the compatibility of results obtained with both resistive micromegas detectors, irradiated and non-irradiated one.
154 - D.Attie , A. Chaus , D. Durand 2013
Piggyback Micromegas consists in a novel readout architecture where the anode element is made of a resistive layer on a ceramic substrate. The resistive layer is deposited on the thin ceramic substrate by an industrial process which provides large dy namic range of resistivity (10$^6$ to 10$^{10}$,M$Omega$/square). The particularity of this new structure is that the active part is entirely dissociated from the read-out element. This gives a large flexibility on the design of the anode structure and the readout scheme. Without significant loss, signals are transmitted by capacitive coupling to the read-out pads. The detector provides high gas gain, good energy resolution and the resistive layer assures spark protection for the electronics. This assembly could be combined with modern pixel array electronic ASICs. First tests with different Piggyback detectors and configurations will be presented. This structure is adequate for cost effective fabrication and low outgassing detectors. It was designed to perform in sealed mode and its long term stability has been extensively studied. In addition perspectives on the future developments will be evoked.
An upgrade of the Near Detector of the T2K long baseline neutrino oscillation experiment, ND280, has been proposed. This upgrade will include two new Time Projection Chambers, each equipped with 16 resistive MicroMegas modules for gas amplification. A first prototype of resistive MicroMegas has been designed, built, installed in the HARP field cage, and exposed to a beam of charged particles at CERN. The data have been used to characterize the performances of the resistive MicroMegas module. A spatial resolution of 300 $mu m$ and a deposited energy resolution of 9% were observed for horizontal electrons crossing the TPCs at 30 cm from the anode. Such performances fully satisfy the requirements for the upgrade of the ND280 TPC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا