ﻻ يوجد ملخص باللغة العربية
Electromagnetic radiation of 1 - 10 THz range has been found at room temperature in a structure with a point contact between a ferromagnetic rod and a thin ferromagnetic film under electric current of high enough density. The radiation is due to nonequilibrium spin injection between the structure components. By estimates, the injection can lead to inverted population of the spin subbands. The radiation power exceeds by orders of magnitude the thermal background (with the Joule heating taking into account) and follows the current without inertia.
In this letter, we show efficient electrical spin injection into a SiGe based textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina
We have fabricated oxide based spin filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin filter junctions. Until recently, spin filters have been largely comprised of polycrystalline mat
We studied the response of a ferromagnet-insulator-normal metal tunnel structure under an external oscillating radio frequency (R.F.) magnetic field. The D. C. voltage across the junction is calculated and is found not to decrease despite the high re
Magnetic junction is considered which consists of two ferromagnetic metal layers, a thin nonmagnetic spacer in between, and nonmagnetic lead. Theory is developed of a magnetization reversal due to spin injection in the junction. Spin-polarized curren
Heterostructures composed of ferromagnetic layers that are mutually interacting through a nonmagnetic spacer are at the core of magnetic sensor and memory devices. In the present study, layer-resolved ferromagnetic resonance was used to investigate t