ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot

335   0   0.0 ( 0 )
 نشر من قبل Sami Amasha
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the Kondo effect in a double quantum dot (DQD), where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the DQD system.

قيم البحث

اقرأ أيضاً

We calculate the nonequilibrium conductance of a system of two capacitively coupled quantum dots, each one connected to its own pair of conducting leads. The system has been used recently to perform pseudospin spectroscopy by controlling independentl y the voltages of the four leads. The pseudospin is defined by the orbital occupation of one or the other dot. Starting from the SU(4) symmetric point of spin and pseudospin degeneracy in the Kondo regime, for an odd number of electrons in the system, we show how the conductance through each dot varies as the symmetry is reduced to SU(2) by a pseudo-Zeeman splitting, and as bias voltages are applied to any of the dots. We analize the expected behavior of the system in general, and predict characteristic fingerprint features of the SU(4) to SU(2) crossover that have not been observed so far.
We present transport measurements of the Kondo effect in a double quantum dot charged with only one or two electrons, respectively. For the one electron case we observe a surprising quasi-periodic oscillation of the Kondo conductance as a function of a small perpendicular magnetic field |B| lesssim 50mT. We discuss possible explanations of this effect and interpret it by means of a fine tuning of the energy mismatch of the single dot levels of the two quantum dots. The observed degree of control implies important consequences for applications in quantum information processing.
Tunneling conductance through two quantum dots, which are connected in series to left and right leads, is calculated by using the numerical renormalization group method. As the hopping between the dots increases from very small value, the following s tates continuously appear; (i) Kondo singlet state of each dot with its adjacent-site lead, (ii) singlet state between the local spins on the dots, and (iii) double occupancy in the bonding orbital of the two dots. The conductance shows peaks at the transition regions between these states. Especially, the peak at the boundary between (i) and (ii) has the unitarity limit value of $2e^{2}/h$ because of coherent connection through the lead-dot-dot-lead. For the strongly correlated cases, the characteristic energy scale of the coherent peak shows anomalous decrease relating to the quantum critical transition known for the two-impurity Kondo effect. The two dots systems give the new realization of the two-impurity Kondo problem.
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport acro ss the system and the Local Density of States of the dots. We study the case of small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain at the Fermi level. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory at T = 0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
Central to condensed matter physics are quantum impurity models, which describe how a local degree of freedom interacts with a continuum. Surprisingly, these models are often universal in that they can quantitatively describe many outwardly unrelated physical systems. Here we develop a double quantum dot-based experimental realization of the SU(4) Kondo model, which describes the maximally symmetric screening of a local four-fold degeneracy. As demonstrated through transport measurements and detailed numerical renormalization group calculations, our device affords exquisite control over orbital and spin physics. Because the two quantum dots are coupled only capacitively, we can achieve orbital state- or pseudospin-resolved bias spectroscopy, providing intimate access to the interplay of spin and orbital Kondo effects. This cannot be achieved in the few other systems realizing the SU(4) Kondo state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا