ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Regulated Star Formation in Galaxies via Momentum Input from Massive Stars

153   0   0.0 ( 0 )
 نشر من قبل Philip Hopkins
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Feedback from massive stars is believed to play a critical role in shaping the galaxy mass function, the structure of the interstellar medium (ISM), and the low efficiency of star formation, but the exact form of the feedback is uncertain. In this paper, the first in a series, we present and test a novel numerical implementation of stellar feedback resulting from momentum imparted to the ISM by radiation, supernovae, and stellar winds. We employ a realistic cooling function, and find that a large fraction of the gas cools to <100K, so that the ISM becomes highly inhomogeneous. Despite this, our simulated galaxies reach an approximate steady state, in which gas gravitationally collapses to form giant molecular clouds (GMCs), dense clumps, and stars; subsequently, stellar feedback disperses the GMCs, repopulating the diffuse ISM. This collapse and dispersal cycle is seen in models of SMC-like dwarfs, the Milky-Way, and z~2 clumpy disk analogues. The simulated global star formation efficiencies are consistent with the observed Kennicutt-Schmidt relation. Moreover, the star formation rates are nearly independent of the numerically imposed high-density star formation efficiency, density threshold, and density scaling. This is a consequence of the fact that, in our simulations, star formation is regulated by stellar feedback limiting the amount of very dense gas available for forming stars. In contrast, in simulations without stellar feedback, i.e. under the action of only gravity and gravitationally-induced turbulence, the ISM experiences runaway collapse to very high densities. In these simulations without feedback, the global star formation rates exceed observed galactic star formation rates by 1-2 orders of magnitude, demonstrating that stellar feedback is crucial to the regulation of star formation in galaxies.



قيم البحث

اقرأ أيضاً

242 - M. Kuhlen , M. Krumholz , P. Madau 2011
We describe cosmological galaxy formation simulations with the adaptive mesh refinement code Enzo that incorporate a star formation prescription regulated by the local abundance of molecular hydrogen. We show that this H2-regulated prescription leads to a suppression of star formation in low mass halos (M_h < ~10^10 M_sun) at z>4, alleviating some of the dwarf galaxy problems faced by theoretical galaxy formation models. H2 regulation modifies the efficiency of star formation of cold gas directly, rather than indirectly reducing the cold gas content with supernova feedback. We determine the local H2 abundance in our most refined grid cells (76 proper parsec in size at z=4) by applying the model of Krumholz, McKee, & Tumlinson, which is based on idealized 1D radiative transfer calculations of H2 formation-dissociation balance in ~100 pc atomic--molecular complexes. Our H2-regulated simulations are able to reproduce the empirical (albeit lower z) Kennicutt-Schmidt relation, including the low Sigma_gas cutoff due to the transition from atomic to molecular phase and the metallicity dependence thereof, without the use of an explicit density threshold in our star formation prescription. We compare the evolution of the luminosity function, stellar mass density, and star formation rate density from our simulations to recent observational determinations of the same at z=4-8 and find reasonable agreement between the two.
211 - E. R. Parkin , S. A. Sim 2013
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shock s on the radiative driving of the stellar winds using steady state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, LX remains largely unaltered, with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind-driving, we term this scenario as self regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppresses the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveals reasonable agreement in terms of log(LX/Lbol). The inclusion of self regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).
We develop a four-phase galaxy evolution model in order to study the effect of accretion of extra-galactic gas on the star formation rate (SFR) of a galaxy. Pure self-regulated star formation of isolated galaxies is replaced by an accretion-regulated star formation mode. The SFR settles into an equlibrium determined entirely by the gas accretion rate on a Gyr time scale.
128 - Ji-hoon Kim 2011
There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numeri cal framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto a MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full 3D adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2e11 Msun galactic halo and its 1e5 Msun embedded MBH at redshift 3 in a cosmological LCDM simulation. The MBH feedback heats the surrounding ISM up to 1e6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant, and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.
Observations of high-z galaxies and gamma-ray bursts now allow for empirical studies during reionization. However, even deep surveys see only the brightest galaxies at any epoch and must extrapolate to arbitrary lower limits to estimate the total rat e of star formation. We first argue that the galaxy populations seen in LBG surveys yield a GRB rate at z > 8 that is an order of magnitude lower than observed. We find that integrating the inferred UV luminosity functions down to M_UV ~ -10 brings LBG- and GRB-inferred SFR density values into agreement up to z ~ 8. GRBs, however, favor a far larger amount of as yet unseen star formation at z > 9. We suggest that the SFR density may only slowly decline out to z ~ 11, in accord with WMAP and Planck reionization results, and that GRBs may be useful in measuring the scale of this multitude of dwarf galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا