ترغب بنشر مسار تعليمي؟ اضغط هنا

Outflow in Overlooked Luminous Quasar: Subaru Observations of AKARI J1757+5907

92   0   0.0 ( 0 )
 نشر من قبل Kentaro Aoki
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Subaru observations of the newly discovered luminous quasar AKARI J1757+5907, which shows an absorption outflow in its spectrum. The absorption consists of 9 distinct troughs, and our analysis focuses on the troughs at ~ -1000$ km s^{-1} for which we can measure accurate column densities of He I*, Fe II and Mg II. We use photoionization models to constrain the ionization parameter, total hydrogen column density, and the number density of the outflowing gas. These constraints yield lower limits for the distance, mass flow rate and kinetic luminosity for the outflow of 3.7 kpc, 70 M_{sun} yr^{-1}, and 2.0 x 10^{43} ergs s^{-1}, respectively. Such mass flow rate value can contribute significantly to the metal enrichment of the intra-cluster medium. We find that this moderate velocity outflow is similar to those recently discovered in massive post-starburst galaxies. Finally, we describe the scientific potential of future observations targeting this object.

قيم البحث

اقرأ أيضاً

We present a detailed analysis of the Astrophysical Research Consortium 3.5 m telescope spectrum of QSO SDSS J0838+2955. The object shows three broad absorption line (BAL) systems at 22,000, 13,000, and 4900 km s^-1 blueshifted from the systemic reds hift of z=2.043. Of particular interest is the lowest velocity system that displays absorption from low-ionization species such as Mg II, Al II, Si II, Si II*, Fe II and Fe II*. Accurate column densities were measured for all transitions in this lowest velocity BAL using an inhomogeneous absorber model. The ratio of column densities of Si II* and Fe II* with respect to their ground states gave an electron number density of log n_e (cm^-3) = 3.75 +/- 0.22 for the outflow. Photoionization modeling with careful regards to chemical abundances and the incident spectral energy distribution predicts an ionization parameter of log U_H = -1.93 +/- 0.21 and a hydrogen column density of log N_H (cm^-2) = 20.80 +/- 0.28. This places the outflow at 3.3+1.5-1.0 kpc from the central AGN. Assuming that the fraction of solid angle subtended by the outflow is 0.2, these values yield a kinetic luminosity of (4.5+3.1-1.8) x 10^45 erg s^-1, which is (1.4+1.1-0.6)% the bolometric luminosity of the QSO itself. Such large kinetic luminosity suggests that QSO outflows are a major contributor to AGN feedback mechanisms.
94 - S. Oyabu 2011
We present a new sample of active galactic nuclei (AGNs) identified using the catalog of the AKARI Mid-infrared(MIR) All-Sky Survey. Our MIR search has an advantage in detecting AGNs that are obscured at optical wavelengths due to extinction. We firs t selected AKARI 9micron excess sources with F(9micron)/F(K_S)>2 where K_S magnitudes were taken from the Two Micron All Sky Survey. We then obtained follow-up near-infrared spectroscopy with the AKARI/IRC, to confirm that the excess is caused by hot dust. We also obtained optical spectroscopy with the Kast Double Spectrograph on the Shane 3-m telescope at Lick Observatory. On the basis of on these observations, we detected hot dust with a characteristic temperature of ~500K in two luminous infrared galaxies. The hot dust is suspected to be associated with AGNs that exhibit their nonstellar activity not in the optical, but in the near- and mid-infrared bands, i.e., they harbor buried AGNs. The host galaxy stellar masses of 4-6 x 10^9 M_sun are small compared with the hosts in optically-selected AGN populations. These objects were missed by previous surveys, demonstrating the power of the AKARI MIR All-Sky Survey to widen AGN searches to include more heavily obscured objects. The existence of multiple dusty star clusters with massive stars cannot be completely ruled out with our current data.
349 - Jenny E. Greene 2011
SDSS J1356+1026 is a pair of interacting galaxies at redshift z=0.123 that hosts a luminous obscured quasar in its northern nucleus. Here we present two long-slit Magellan LDSS-3 spectra that reveal a pair of symmetric ~10 kpc-size outflows emerging from this nucleus, with observed expansion velocities of ~250 km/s in projection. We present a kinematic model of these outflows and argue that the deprojected physical velocities of expansion are likely ~1000 km/s and that the kinetic energy of the expanding shells is likely 10^44-10^45 erg/s, with an absolute minimum of >10^42 erg/s. Although a radio counterpart is detected at 1.4GHz, it is faint enough that the quasar is considered to be radio-quiet by all standard criteria, and there is no evidence of extended emission due to radio lobes, whether aged or continuously powered by an ongoing jet. We argue that the likely level of star formation is probably insufficient to power the observed energetic outflow and that SDSS J1356+1026 makes a strong case for radio-quiet quasar feedback. In further support of this hypothesis, polarimetric observations show that the direction of quasar illumination is coincident with the direction of the outflow.
We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > ~800 d in the observer frame, and the maximum brightness during observation reached approximately 23 mag in the i and z bands. The faint host galaxy is clearly identified in all 5 optical bands of the deep SDF images. The photometric redshift of the host yields z~0.6 and the corresponding absolute magnitude at maximum is ~-20. This implies that this event shone with an absolute magnitude brighter than -19 mag for approximately 300 d in the rest frame, which is significantly longer than a typical supernova and ultra-luminous supernova. The total radiated energy during our observation was 1x10^51 erg. The light curves and color evolution are marginally consistent with some of luminous IIn supernova. We suggest that the transient may be a unique and peculiar supernova at intermediate redshift.
In order to construct a sample of ultra-luminous infrared galaxies (ULIRGs, with infrared luminosity, $L_{rm IR} > 10^{12}$ L$_{odot}$) at 0.5 < z < 1, we are conducting an optical follow-up program for bright 90-$mu$m FIR sources with a faint optica l (i < 20) counterpart selected in the AKARI Far-Infrared Surveyor (FIS) Bright Source catalog (Ver.2). AKARI-FIS-V2 J0916248+073034, identified as a ULIRG at z = 0.49 in the spectroscopic follow-up observation, indicates signatures of an extremely strong outflow in its emission line profiles. Its [OIII] 5007AA emission line shows FWHM of 1830 km s$^{-1}$ and velocity shift of -770 km s$^{-1}$ in relative to the stellar absorption lines. Furthermore, low-ionization [OII] 3726AA 3729AA doublet also shows large FWHM of 910 km s$^{-1}$ and velocity shift of -380 km s$^{-1}$. After the removal of an unresolved nuclear component, the long-slit spectroscopy 2D image possibly shows that the outflow extends to radius of 4 kpc. The mass outflow and energy ejection rates are estimated to be 500 M$_{odot}$ yr$^{-1}$ and $4times10^{44}$ erg s$^{-1}$, respectively, which imply that the outflow is among the most powerful ones observed in ULIRGs and QSOs at 0.3 < z < 1.6. The co-existence of the strong outflow and intense star formation (star formation rate of 990 M$_{odot}$ yr$^{-1}$) indicates that the feedback of the strong outflow has not severely affect the star-forming region of the galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا