ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the Astrophysical Research Consortium 3.5 m telescope spectrum of QSO SDSS J0838+2955. The object shows three broad absorption line (BAL) systems at 22,000, 13,000, and 4900 km s^-1 blueshifted from the systemic redshift of z=2.043. Of particular interest is the lowest velocity system that displays absorption from low-ionization species such as Mg II, Al II, Si II, Si II*, Fe II and Fe II*. Accurate column densities were measured for all transitions in this lowest velocity BAL using an inhomogeneous absorber model. The ratio of column densities of Si II* and Fe II* with respect to their ground states gave an electron number density of log n_e (cm^-3) = 3.75 +/- 0.22 for the outflow. Photoionization modeling with careful regards to chemical abundances and the incident spectral energy distribution predicts an ionization parameter of log U_H = -1.93 +/- 0.21 and a hydrogen column density of log N_H (cm^-2) = 20.80 +/- 0.28. This places the outflow at 3.3+1.5-1.0 kpc from the central AGN. Assuming that the fraction of solid angle subtended by the outflow is 0.2, these values yield a kinetic luminosity of (4.5+3.1-1.8) x 10^45 erg s^-1, which is (1.4+1.1-0.6)% the bolometric luminosity of the QSO itself. Such large kinetic luminosity suggests that QSO outflows are a major contributor to AGN feedback mechanisms.
Using high resolution VLT spectra, we study the multi-component outflow systems of two quasars exhibiting intrinsic Fe II absorption (QSO 2359-1241 and SDSS J0318-0600). From the extracted ionic column densities and using photoionization modeling we
We present an analysis of the 2-10 keV X-ray emission associated with the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Our sample consists of 32 BCGs that lie in highly X-ray luminous cluster of galaxies (L_X-ray (0.1-2.4 keV)
We study the effect of Active Nuclei Galaxy (AGN) feedback as one of the major mechanisms modifying the cluster morphology influencing scaling relations, which are the most uncertain factor in constraining cosmology with clusters of galaxies. Using c
We report ALMA observations of CO(3-2) emission in the Seyfert 2 double-barred galaxy NGC1433, at the unprecedented spatial resolution of 0.5=24 pc. Our aim is to probe AGN feeding and feedback phenomena through the morphology and dynamics of the gas
The cosmic history of supermassive black hole (SMBH) growth is important for understanding galaxy evolution, reionization and the physics of accretion. Recent NuSTAR, Swift-BAT and textit{Chandra} hard X-ray surveys have provided new constraints on t