ﻻ يوجد ملخص باللغة العربية
A still open issue in many-body theory is the asymptotic behavior of the exchange-correlation energy and potential in the vacuum region of a metal surface. Here we report a numerical study of the position-dependent exchange-correlation energy for jellium slabs, as obtained by combining the formally exact adiabatic-connection-fluctuation-dissipation theorem with either time-dependent density-functional theory or an inhomogeneous Singwi-Tosi-Land-Sjolander approach. We find that the inclusion of correlation allows to obtain well-converged semi-infinite-jellium results (independent of the slab thickness) that exhibit an image-like asymptotic behavior close to the classical image potential $V_{im}(z)=-e^2/4z$.
An adiabatic-connection fluctuation-dissipation theorem approach based on a range separation of electron-electron interactions is proposed. It involves a rigorous combination of short-range density functional and long-range random phase approximation
We present a detailed study of the coupling-constant-averaged exchange-correlation hole density at a jellium surface, which we obtain in the random-phase approximation (RPA) of many-body theory. We report contour plots of the exchange-only and exchan
The position-dependent exact-exchange energy per particle $varepsilon_x(z)$ (defined as the interaction between a given electron at $z$ and its exact-exchange hole) at metal surfaces is investigated, by using either jellium slabs or the semi-infinite
Exact-exchange self-consistent calculations of the Kohn-Sham potential, surface energy, and work function of jellium slabs are reported in the framework of the Optimized Effective Potential (OEP) scheme of Density Functional Theory. In the vacuum sid
Nonadiabatic effects that arise from the concerted motion of electrons and atoms at comparable energy and time scales are omnipresent in thermal and light-driven chemistry at metal surfaces. Excited (hot) electrons can measurably affect molecule-meta