ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the coupling-constant-averaged exchange-correlation hole density at a jellium surface, which we obtain in the random-phase approximation (RPA) of many-body theory. We report contour plots of the exchange-only and exchange-correlation hole densities, the integration of the exchange-correlation hole density over the surface plane, the on-top correlation hole, and the energy density. We find that the on-top correlation hole is accurately described by local and semilocal density-functional approximations. We also find that for electrons that are localized far outside the surface the main part of the corresponding exchange-correlation hole is localized at the image plane.
A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work we demonstrate the importance of collective van der Waals d
We propose a generalized gradient approximation (GGA) for the angle- and system-averaged exchange-correlation hole of a many-electron system. This hole, which satisfies known exact constraints, recovers the PBEsol (Perdew-Burke-Ernzerhof for solids)
The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the $GW$ approximation of ma
A still open issue in many-body theory is the asymptotic behavior of the exchange-correlation energy and potential in the vacuum region of a metal surface. Here we report a numerical study of the position-dependent exchange-correlation energy for jel
We investigate some surfaces of a paradigmatic sp bonded metal--namely, Al(110), Al(100), and Al(111)--by means of the electron localization function (ELF), implemented in a first-principle pseudopotential framework. ELF is a ground-state property wh