ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on homotopy types of connected components of Map(S^4,BSU(2))

150   0   0.0 ( 0 )
 نشر من قبل Mitsunobu Tsutaya
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Mitsunobu Tsutaya




اسأل ChatGPT حول البحث

Connected components of $Map(S^4,BSU(2))$ are the classifying spaces of gauge groups of principal $SU(2)$-bundles over $S^4$. Tsukuda [Tsu01] has investigated the homotopy types of connected components of $Map(S^4,BSU(2))$. But unfortunately, the proof of Lemma 2.4 in [Tsu01] is not correct for $p=2$. In this paper, we give a complete proof. Moreover, we investigate the further divisibility of $epsilon_i$ defined in [Tsu01]. In [Tsu], it is shown that divisibility of $epsilon_i$ have some information about $A_i$-equivalence types of the gauge groups.


قيم البحث

اقرأ أيضاً

115 - Tse Leung So 2016
Let $G$ be a simply-connected simple compact Lie group and let $M$ be an orientable smooth closed 4-manifold. In this paper we calculate the homotopy type of the suspension of $M$ and the homotopy types of the gauge groups of principal $G$-bundles ov er $M$ when $pi_1(M)$ is: (1)~$mathbb{Z}^{*m}$, (2)~$mathbb{Z}/p^rmathbb{Z}$, or (3)~$mathbb{Z}^{*m}*(*^n_{j=1}mathbb{Z}/p_j^{r_j}mathbb{Z})$, where $p$ and the $p_j$s are odd primes.
We determine the number of distinct fibre homotopy types for the gauge groups of principal $Sp(2)$-bundles over a closed, simply-connected four-manifold.
139 - Tseleung So 2018
Let $M$ be an orientable, simply-connected, closed, non-spin 4-manifold and let $mathcal{G}_k(M)$ be the gauge group of the principal $G$-bundle over $M$ with second Chern class $kinmathbb{Z}$. It is known that the homotopy type of $mathcal{G}_k(M)$ is determined by the homotopy type of $mathcal{G}_k(mathbb{CP}^2)$. In this paper we investigate properties of $mathcal{G}_k(mathbb{CP}^2)$ when $G = SU(n)$ that partly classify the homotopy types of the gauge groups.
We prove a claim by Williams that the coassembly map is a homotopy limit map. As an application, we show that the homotopy limit map for the coarse version of equivariant $A$-theory agrees with the coassembly map for bivariant $A$-theory that appears in the statement of the topological Riemann-Roch theorem.
Let $G$ be a compact connected Lie group with $pi_1(G)congmathbb{Z}$. We study the homotopy types of gauge groups of principal $G$-bundles over Riemann surfaces. This can be applied to an explicit computation of the homotopy groups of the moduli spaces of stable vector bundles over Riemann surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا