ترغب بنشر مسار تعليمي؟ اضغط هنا

The upper critical field and its anisotropy in LiFeAs

117   0   0.0 ( 0 )
 نشر من قبل Huiqiu Yuan
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The upper critical field $mu_0H_{c2}(T_c)$ of LiFeAs single crystals has been determined by measuring the electrical resistivity using the facilities of pulsed magnetic field at Los Alamos. We found that $mu_0H_{c2}(T_c)$ of LiFeAs shows a moderate anisotropy among the layered iron-based superconductors; its anisotropic parameter $gamma$ monotonically decreases with decreasing temperature and approaches $gammasimeq 1.5$ as $Trightarrow 0$. The upper critical field reaches 15T ($Hparallel c$) and 24.2T ($Hparallel ab$) at $T=$1.4K, which value is much smaller than other iron-based high $T_c$ superconductors. The temperature dependence of $mu_0H_{c2}(T_c)$ can be described by the Werthamer-Helfand-Hohenberg (WHH) method, showing orbitally and (likely) spin-paramagnetically limited upper critical field for $Hparallel c$ and $Hparallel ab$, respectively.



قيم البحث

اقرأ أيضاً

206 - K. Sasmal 2010
The magnetic properties of LiFeAs, as single crystalline and polycrystalline samples, were investigated. The lower critical field deduced from the vortex penetration of two single crystals appears to be almost isotropic with a temperature dependence closer to that of two-gap superconductors. The parameters extracted from the reversible magnetizations of sintered polycrystalline samples are in good agreement with those from the single crystal data.
223 - V.A. Gasparov 2010
Early work on the iron-arsenide compounds supported the view, that a reduced dimensionality might be a necessary prerequisite for high-Tc superconductivity. Later, however, it was found that the zero-temperature upper critical magnetic field, Hc2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we report measurements of the temperature dependence of the electrical resistivity, Gamma(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single crystals in zero magnetic field and for Ba0.68K0.32Fe2As2 as well in static and pulsed magnetic fields up to 60 T. We find that the resistivity of both compounds in zero field is well described by an exponential term due to inter-sheet umklapp electron-phonon scattering between light electrons around the M point to heavy hole sheets at the Gamma point in reciprocal space. From our data, we construct an H-T phase diagram for the inter-plane (H || c) and in-plane (H || ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data for underdoped 122 FeAs compounds, we find that Hc2(T) is in fact anisotropic in optimally doped samples down to low temperatures. The anisotropy parameter, {gamma} = Habc2/Hcc2, is about 2.2 at Tc. For both field orientations we find a concave curvature of the Hc2 lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism we perfectly can describe Hc2(T) and its anisotropy.
We study the effect of 100 MeV Silicon and 200 MeV Gold ion irradiation on the inter and intra grain properties of superconducting thin films of Magnesium Diboride. Substantial decrease in inter-grain connectivity is observed, depending on irradiatio n dose and type of ions used. We establish that modification of sigma band scattering mechanism, and consequently the upper critical field and anisotropy, depends on the size and directional properties of the extrinsic defects. Post heavy ion irradiation, the upper critical field shows enhancement at a defect density that is five orders of magnitude less compared to neutron irradiation. The critical current density however is best improved through light ion irradiation.
Miniature Hall-probe arrays were used to measure the critical current densities for the three main directions of vortex motion in the stoichiometric LiFeAs superconductor. These correspond to vortices oriented along the c-axis moving parallel to the ab-plane, and to vortices in the ab-plane moving perpendicular to, and within the plane, respectively. The measurements were carried out in the low-field regime of strong vortex pinning, in which the critical current anisotropy is solely determined by the coherence length anisotropy parameter, {epsilon}_{xi}. This allows extraction of {epsilon}_{xi} at magnetic fields far below the upper critical field B_c2. We find that increasing magnetic field decreases the anisotropy of the coherence length.
We report the first measurements of the anisotropic upper critical field $H_{c2}(T)$ for K$_{2}$Cr$_{3}$As$_{3}$ single crystals up to 60 T and $T > 0.6$ K. Our results show that the upper critical field parallel to the Cr chains, $H_{c2}^parallel (T )$, exhibits a paramagnetically-limited behavior, whereas the shape of the $H_{c2}^perp (T)$ curve (perpendicular to the Cr chains) has no evidence of paramagnetic effects. As a result, the curves $H_{c2}^perp (T)$ and $H_{c2}^parallel(T)$ cross at $Tapprox 4$ K, so that the anisotropy parameter $gamma_H(T)=H_{c2}^perp/H_{c2}^parallel (T)$ increases from $gamma_H(T_c)approx 0.35$ near $T_c$ to $gamma_H(0)approx 1.7$ at 0.6 K. This behavior of $H_{c2}^|(T)$ is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity with the electron spins locked onto the direction of Cr chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا