ﻻ يوجد ملخص باللغة العربية
We have carried out an analysis of singularities in Kohn variational calculations for low energy e^{+}-H_{2} elastic scattering. Provided that a sufficiently accurate trial wavefunction is used, we argue that our implementation of the Kohn variational principle necessarily gives rise to singularities which are not spurious. We propose two approaches for optimizing a free parameter of the trial wavefunction in order to avoid anomalous behaviour in scattering phase shift calculations, the first of which is based on the existence of such singularities. The second approach is a more conventional optimization of the generalized Kohn method. Close agreement is observed between the results of the two optimization schemes; further, they give results which are seen to be effectively equivalent to those obtained with the complex Kohn method. The advantage of the first optimization scheme is that it does not require an explicit solution of the Kohn equations to be found. We give examples of anomalies which cannot be avoided using either optimization scheme but show that it is possible to avoid these anomalies by considering variations in the nonlinear parameters of the trial function.
We give a pedagogical introduction of the stochastic variational method by considering the quantization of a non-inertial particle system. We show that the effects of fictitious forces are represented in the forms of vector fields which behave analog
We present a variational approach which shows that the wave functions belonging to quantum systems in different potential landscapes, are pairwise linked to each other through a generalized continuity equation. This equation contains a source term pr
Infinite sets of inequalities which generalize all the known inequalities that can be used in the majorization step of the Approximating Hamiltonian method are derived. They provide upper bounds on the difference between the quadratic fluctuations of
We investigate the level density for several ensembles of positive random matrices of a Wishart--like structure, $W=XX^{dagger}$, where $X$ stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform, we study free mult
The complex Kohn variational method is extended to compute light-driven electronic transitions between continuum wavefunctions in atomic and molecular systems. This development enables the study of multiphoton processes in the perturbative regime for