ﻻ يوجد ملخص باللغة العربية
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7 % and +13 %, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by to the contribution of the J=2-1 and J=1-0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index beta, and the dust optical depth at 250 microns tau. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16-17 K in the diffuse regions to 13-14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T-beta anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and HI data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 microns per hydrogen atom tau/NH. We report an increase of tau/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the ra
The integrated Spectral Energy Distributions of the Large and Small Magellanic Cloud appear significantly flatter than expected from dust models based on their FIR and radio emission. The origin of this millimetre excess is still unexplained, and is
Aims: Mapping the interstellar medium in 3D provides a wealth of insights into its inner working. The Milky Way is the only galaxy for which detailed 3D mapping can be achieved in principle. In this paper, we reconstruct the dust density in and aroun
The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requireme
This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over