ﻻ يوجد ملخص باللغة العربية
The performance of the Planck instruments in space is enabled by their low operating temperatures, 20K for LFI and 0.1K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20K), a 4He Joule-Thomson cooler (4.7K), and a 3He-4He dilution cooler (1.4K and 0.1K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, andoperates at a mean temperature of 384K. At the other end of the spacecraft, the telescope baffle operates at 42.3K and the telescope primary mirror operates at 35.9K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data.
The European Space Agencys Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data un
The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the Cosmic Microwave Background and galactic foregrounds in six wide bands centered at 100, 143, 217, 353, 545 and 857 GHz at an angula
The all-sky coverage of the Planck Early Release Compact Source Catalogue (ERCSC) provides an unsurpassed survey of galaxies at submillimetre (submm) wavelengths, representing a major improvement in the numbers of galaxies detected, as well as the ra
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and
We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cl