ﻻ يوجد ملخص باللغة العربية
We construct an all-sky map of the apparent temperature and optical depth of thermal dust emission using the Planck-HFI and IRAS data. The optical depth maps are correlated to tracers of the atomic and molecular gas. The correlation is linear in the lowest column density regions at high galactic latitudes. At high NH, the correlation is consistent with that of the lowest NH. In the intermediate NH range, we observe departure from linearity, with the dust optical depth in excess to the correlation. We attribute this excess emission to thermal emission by dust associated with a Dark-Gas phase, undetected in the available HI and CO measurements. We show the 2D spatial distribution of the Dark-Gas in the solar neighborhood and show that it extends around known molecular regions traced by CO. The average dust emissivity in the HI phase in the solar neighborhood follows roughly a power law distribution with beta = 1.8 all the way down to 3 mm, although the SED flattens slightly in the millimetre. The threshold for the existence of the Dark-Gas is found at NH = (8.0pm 0.58) 10^{20} Hcm-2. Assuming the same dust emissivity at high frequencies for the dust in the atomic and molecular phases leads to an average XCO = (2.54pm0.13) 10^{20} H2cm-2/(K km s-1). The mass of Dark-Gas is found to be 28% of the atomic gas and 118% of the CO emitting gas in the solar neighborhood. A possible origin for the Dark-Gas is the existence of a dark molecular phase, where H2 survives photodissociation but CO does not. The observed transition for the onset of this phase in the solar neighborhood (AV = 0.4 mag) appears consistent with recent theoretical predictions. We also discuss the possibility that up to half of the Dark-Gas could be in atomic form, due to optical depth effects in the HI measurements.
We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine and Li in 2007 (DL). We study the performance and results of this model, and discuss implications
This paper presents an all-sky model of dust emission from the Planck 857, 545 and 353 GHz, and IRAS 100 micron data. Using a modified black-body fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over
We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high s
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and
We present the statistical properties of the first version of the Cold Core Catalogue of Planck Objects (C3PO), in terms of their spatial distribution, temperature, distance, mass, and morphology. We also describe the statistics of the Early Cold Cor