ﻻ يوجد ملخص باللغة العربية
We show that based on the general solution, given by Corrigan, Olive, Fairlie and Nuyts, in the region outside the monopoles core; the equations of motion in the Higgs vacuum (i.e. outside the monopoles core) will not allow asymptotically non-singular extended non-trivial non-Dyonic (including, also, all static) solutions of the t Hooft-Polyakov monopole. In other words, unless the monopoles magnetic charge is shielded (by some mechanism), the Dirac string is inevitable asymptotically, in the region outside the monopoles core, for all non-Dyonic solutions that are admissible by the equations of motion. That we show that the non-dyonic solutions (based on Corrigan et al) will include all admissible static solutions and their gauge transform might be interpreted as that all admissible dyonic solutions (based on Corrigan et al) are composite solutions.
Lorentz invariance is broken for the non-Abelian monopoles. Here we will consider the case of t Hooft-Polyakov monopole and show that the Lorentz invariance of its field will be restored using Dirac quantization.
At classical level, dynamical derivation of the properties and conservation laws for topologically non-trivial systems from Noether theorem versus the derivation of the systems properties on topological grounds are considered as distinct. We do celeb
The dependence of the energies of axially symmetric monopoles of magnetic charges 2 and 3, on the Higgs self-interaction coupling constant, is studied numerically. Comparing the energy per unit topological charge of the charge-2 monopole with the ene
We prove, by a shooting method, the existence of infinitely many solutions of the form $psi(x^0,x) = e^{-iOmega x^0}chi(x)$ of the nonlinear Dirac equation {equation*} iunderset{mu=0}{overset{3}{sum}} gamma^mu partial_mu psi- mpsi - F(bar{psi}psi)psi
We consider a sequence of blowup solutions of a two dimensional, second order elliptic equation with exponential nonlinearity and singular data. This equation has a rich background in physics and geometry. In a work of Bartolucci-Chen-Lin-Tarantello