ﻻ يوجد ملخص باللغة العربية
In this paper, we propose the SPR (sparse phase retrieval) method, which is a new phase retrieval method for coherent x-ray diffraction imaging (CXDI). Conventional phase retrieval methods effectively solve the problem for high signal-to-noise ratio measurements, but would not be sufficient for single biomolecular imaging which is expected to be realized with femto-second x-ray free electron laser pulses. The SPR method is based on the Bayesian statistics. It does not need to set the object boundary constraint that is required by the commonly used hybrid input-output (HIO) method, instead a prior distribution is defined with an exponential distribution and used for the estimation. Simulation results demonstrate that the proposed method reconstructs the electron density under a noisy condition even some central pixels are masked.
We comment on the recent manuscript by Raines et al. [arXiv:0905.0269v2] (now published in Nature, vol. 463, p. 214-217, 2010), which suggests that in certain conditions a single diffraction measurement may be sufficient to reconstruct the full three
This paper proposes a novel algorithm for image phase retrieval, i.e., for recovering complex-valued images from the amplitudes of noisy linear combinations (often the Fourier transform) of the sought complex images. The algorithm is developed using
Monte-Carlo (MC) methods, based on random updates and the trial-and-error principle, are well suited to retrieve particle size distributions from small-angle scattering patterns of dilute solutions of scatterers. The size sensitivity of size determin
The recent development of phase-grating moire neutron interferometry promises a wide range of impactful experiments from dark-field imaging of material microstructure to precise measurements of fundamental constants. However, the contrast of 3 % obta
While characterization of coherent wavefields is essential to laser, x-ray and electron imaging, sensors measure the squared magnitude of the field, rather than the field itself. Holography or phase retrieval must be used to characterize the field. T