ترغب بنشر مسار تعليمي؟ اضغط هنا

A much lower density for the transiting extrasolar planet WASP-7

133   0   0.0 ( 0 )
 نشر من قبل John Southworth
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first high-precision photometry of the transiting extrasolar planetary system WASP-7, obtained using telescope defocussing techniques and reaching a scatter of 0.68 mmag per point. We find that the transit depth is greater and that the host star is more evolved than previously thought. The planet has a significantly larger radius (1.330 +/- 0.093 Rjup versus 0.915 +0.046 -0.040 Rjup) and much lower density (0.41 +/- 0.10 rhojup versus 1.26 +0.25 -0.21 rhojup) and surface gravity (13.4 +/- 2.6 m/s2 versus 26.4 +4.4 -4.0 m/s2) than previous measurements showed. Based on the revised properties it is no longer an outlier in planetary mass--radius and period--gravity diagrams. We also obtain a more precise transit ephemeris for the WASP-7 system.



قيم البحث

اقرأ أيضاً

Context. The extrasolar planet HAT-P-8 b was thought to be one of the more inflated transiting hot Jupiters. Aims. By using new and existing photometric data, we computed precise estimates of the physical properties of the system. Methods. We present photometric observations comprising eleven light curves covering six transit events, obtained using five medium-class telescopes and telescope-defocussing technique. One transit was simultaneously obtained through four optical filters, and two transits were followed contemporaneously from two observatories. We modelled these and seven published datasets using the jktebop code. The physical parameters of the system were obtained from these results and from published spectroscopic measurements. In addition, we investigated the theoretically-predicted variation of the apparent planetary radius as a function of wavelength, covering the range 330-960 nm. Results. We find that HAT-P-8 b has a significantly lower radius (1.321 R_Jup) and mass (1.275 M_Jup) compared to previous estimates (1.50 R_Jup and 1.52 M_Jup respectively). We also detect a radius variation in the optical bands that, when compared with synthetic spectra of the planet, may indicate the presence of a strong optical absorber, perhaps TiO and VO gases, near the terminator of HAT-P-8 b. Conclusions. These new results imply that HAT-P-8 b is not significantly inflated, and that its position in the planetary mass-radius diagram is congruent with those of many other transiting extrasolar planets.
HD 15082 (WASP-33) is the hottest and fastest rotating star known to harbor a transiting extrasolar planet (WASP-33b). The lack of high precision radial velocity (RV) data stresses the need for precise light curve analysis and gathering further RV da ta. By using available photometric and RV data, we perform a blend analysis, compute more accurate system parameters, confine the planetary mass and attempt to cast light on the observed transit anomalies. We combine the original HATNet observations and various followup data to jointly analyze the signal content and extract the transit component and use our RV data to aid the global parameter determination. The blend analysis of the combination of multicolor light curves yields the first independent confirmation of the planetary nature of WASP-33b. We clearly identify three frequency components in the 15-21 1/day regime with amplitudes 7-5 mmag. These frequencies correspond to the delta Scuti-type pulsation of the host star. None of these pulsation frequencies or their low-order linear combinations are in close resonance with the orbital frequency. We show that these pulsation components explain some but not all of the observed transit anomalies. The grand-averaged transit light curve shows that there is a ~1.5 mmag brightening shortly after the planet passes the mid-transit phase. Although the duration and amplitude of this brightening varies, it is visible even through the direct inspections of the individual transit events (some 40-60% of the followup light curves show this phenomenon). We suggest that the most likely explanation of this feature is the presence of a well-populated spot belt which is highly inclined to the orbital plane. This geometry is consistent with the inference from the spectroscopic anomalies. Finally, we constrain the planetary mass to M_p=3.27+/-0.73 M_J by using our RV data collected by the TRES spectrograph.
We report the discovery of three extrasolar planets that transit their moderately bright (Vmag = 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03-MJup planet which passes in front of the limb of its K2V host star every 3.13 days. Weak Ca II H+K emission seen in the spectra of WASP-45 suggests the star is chromospherically active. WASP-46b is a 2.10-MJup planet in a 1.43-day orbit around a G6V star. Rotational modulation of the light curves of WASP-46 and weak Ca II H+K emission in its spectra show the star to be photospherically and chromospherically active. We imposed circular orbits in our analyses as the radial velocity data are consistent with (near-)circular orbits, as could be expected from both empirical and tidal-theory perspectives for such short-period, Jupiter-mass planets. We discuss the impact of fitting for eccentric orbits for such planets when not supported by the data. The derived planetary and stellar radii depend on the fitted eccentricity and these parameters inform intense theoretical efforts concerning tidal circularisation and heating, bulk planetary composition and the observed systematic errors in planetary and stellar radii. As such, we recommend exercising caution in fitting the orbits of short period, Jupiter-mass planets with an eccentric model when there is no evidence of non-circularity.
We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P=3.7520656+-0.0000028d has a mass M_p=0.542+-0.050M_J and radius R_p=1.428+-0.077R_J, and is therefore the one of least dense transiting exoplanets so far discovered (rho_p=0.247+-0.035g cm^-3). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T_eff=6300+-100K and [Fe/H]=-0.17+-0.11.
(abridged) We report the discovery of three new transiting planets: WASP-85 A b, WASP-116 b, and WASP-149 b. WASP-85 b orbits its host star every 2.66 days, and has a mass of 1.25 M_Jup and a radius of 1.25 R_Jup. The host star is of G5 spectral type , with magnitude V = 11.2, and lies 141 pc distant. The system has a K-dwarf binary companion, WASP-85 B, at a separation of ~1.5. The close proximity of this companion leads to contamination of our photometry, decreasing the apparent transit depth that we account for during our analysis. Analysis of the Ca II H+K lines shows strong emission that implies that both binary components are strongly active. WASP-116 b is a warm, mildly inflated super-Saturn, with a mass of 0.59 M_Jup and a radius of 1.43 R_Jup. It was discovered orbiting a metal-poor ([Fe/H] = -0.28 dex), cool (T_eff = 5950 K) G0 dwarf every 6.61 days. WASP-149 b is a typical hot Jupiter, orbiting a G6 dwarf with a period of 1.33 days. The planet has a mass and radius of 1.05 M_Jup and 1.29 R_Jup, respectively. The stellar host has an effective temperature of T_eff = 5750 K and has a metallicity of [Fe/H] = 0.16 dex. WASP photometry of the system is contaminated by a nearby star; we therefore corrected the depth of the WASP transits using the measured dilution. WASP-149 lies inside the Neptune desert identified in the planetary mass-period plane by Mazeh, Holczer & Faigler (2016). We model the modulation visible in the K2 lightcurve of WASP-85 using a simple three-spot model consisting of two large spots on WASP-85 A, and one large spot on WASP-85 B, finding rotation periods of 13.1+/-0.1 days for WASP-85 A and 7.5+/-0.03 days for WASP-85 B. We estimate stellar inclinations of I_A = 66.8+/-0.7 degrees and I_B = 39.7+/-0.2 degrees, and constrain the obliquity of WASP-85 A b to be psi<27 degrees. We therefore conclude that WASP-85 A b is very likely to be aligned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا