ترغب بنشر مسار تعليمي؟ اضغط هنا

The low density transiting exoplanet WASP-15b

119   0   0.0 ( 0 )
 نشر من قبل Richard West
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a low-density exoplanet transiting an 11th magnitude star in the Southern hemisphere. WASP-15b, which orbits its host star with a period P=3.7520656+-0.0000028d has a mass M_p=0.542+-0.050M_J and radius R_p=1.428+-0.077R_J, and is therefore the one of least dense transiting exoplanets so far discovered (rho_p=0.247+-0.035g cm^-3). An analysis of the spectrum of the host star shows it to be of spectral type around F5, with an effective temperature T_eff=6300+-100K and [Fe/H]=-0.17+-0.11.



قيم البحث

اقرأ أيضاً

We present ground-based optical transmission spectroscopy of the low-density hot Jupiter WASP-88b covering the wavelength range 4413-8333 {AA} with the FORS2 spectrograph on the Very Large Telescope. The FORS2 white light curves exhibit a significant time-correlated noise which we model using a Gaussian Process and remove as a wavelength-independent component from the spectroscopic light curves. We analyse complementary photometric observations from the Transiting Exoplanet Survey Satellite and refine the system properties and ephemeris. We find a featureless transmission spectrum with increased absorption towards shorter wavelengths. We perform an atmospheric retrieval analysis with the AURA code, finding tentative evidence for haze in the upper atmospheric layers and a lower likelihood for a dense cloud deck. Whilst our retrieval analysis results point toward clouds and hazes, further evidence is needed to definitively reject a clear-sky scenario.
We report the discovery of WASP-13b, a low-mass $ M_p = 0.46 ^{+ 0.06}_{- 0.05} M_J$ transiting exoplanet with an orbital period of $4.35298 pm 0.00004$ days. The transit has a depth of 9 mmag, and although our follow-up photometry does not allow us to constrain the impact parameter well ($0 < b < 0.46$), with radius in the range $R_p sim 1.06 - 1.21 R_J$ the location of WASP-13b in the mass-radius plane is nevertheless consistent with H/He-dominated, irradiated, low core mass and core-free theoretical models. The G1V host star is similar to the Sun in mass (M$_{*} = 1.03^{+0.11}_ {- 0.09} M_{odot}$) and metallicity ([M/H]=$0.0pm0.2$), but is possibly older ($8.5^{+ 5.5}_{- 4.9}$ Gyr).
154 - F. Bouchy , L. Hebb , I. Skillen 2010
We report the discovery of WASP-21b, a new transiting exoplanet discovered by the Wide Angle Search for Planets (WASP) Consortium and established and characterized with the FIES, SOPHIE, CORALIE and HARPS fiber-fed echelle spectrographs. A 4.3-d peri od, 1.1% transit depth and 3.4-h duration are derived for WASP-21b using SuperWASP-North and high precision photometric observations at the Liverpool Telescope. Simultaneous fitting to the photometric and radial velocity data with a Markov Chain Monte Carlo procedure leads to a planet in the mass regime of Saturn. With a radius of 1.07 R_Jup and mass of 0.30 M_Jup, WASP-21b has a density close to 0.24 rho_Jup corresponding to the distribution peak at low density of transiting gaseous giant planets. With a host star metallicity [Fe/H] of -0.46, WASP-21b strengthens the correlation between planetary density and host star metallicity for the five known Saturn-like transiting planets. Furthermore there are clear indications that WASP-21b is the first transiting planet belonging to the thick disc.
309 - E. K. Simpson 2010
We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting a mv = 12.7 G2-type dwarf, with a period of 3.577471 pm 0.00001 d, transit epoch T0 = 2455338.6188 pm 0.0006 (HJD), and a transit duration 0.1304 pm 0.0018 d. The planetary com panion has a mass Mp = 1.80 pm 0.17 MJ and radius Rp = 1.16 pm 0.07 RJ, yielding a mean density of 1.15 pm 0.15 times that of Jupiter. From a spectral analysis and comparisons with stellar models, we find the host star has M* = 0.925 pm 0.120 Msun, R* = 1.003 pm 0.053 Rsun, Teff = 5800 pm 150 K and [Fe/H] = -0.40 pm 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.
124 - S. C. C. Barros 2010
We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2455335.92050 +/- 0.00074 (HJD) and the transit duration is 4.663 hours. WASP-38bs discovery was enabled due to an upgrade t o the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 +/- 80K, logg =4.3 +/- 0.1, vsini=8.6 +/- 0.4 km/s, M*=1.16 +/- 0.04 Msun and R* =1.33 +/- 0.03 Rsun, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. The planet has a mass of 2.69 +/- 0.06 Mjup and a radius of 1.09 +/-0.03 Rjup giving a density, rho_p = 2.1 +/-0.1 rho_jup. The high precision of the eccentricity e=0.0314 +/- 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 +/- 33K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V =9.4 mag), is a good candidate for followup atmospheric studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا