ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant vacant component left by a random walk in a random d-regular graph

103   0   0.0 ( 0 )
 نشر من قبل Jiri Cerny
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the trajectory of a simple random walk on a d-regular graph with d>2 and locally tree-like structure as the number n of vertices grows. Examples of such graphs include random d-regular graphs and large girth expanders. For these graphs, we investigate percolative properties of the set of vertices not visited by the walk until time un, where u>0 is a fixed positive parameter. We show that this so-called vacant set exhibits a phase transition in u in the following sense: there exists an explicitly computable threshold u* such that, with high probability as n grows, if u<u*, then the largest component of the vacant set has a volume of order n, and if u>u*, then it has a volume of order log(n). The critical value u* coincides with the critical intensity of a random interlacement process (introduced by Sznitman [arXiv:0704.2560]) on a d-regular tree. We also show that the random interlacement model describes the structure of the vacant set in local neighbourhoods.



قيم البحث

اقرأ أيضاً

92 - David Sivakoff 2010
The d-dimensional Hamming torus is the graph whose vertices are all of the integer points inside an a_1 n X a_2 n X ... X a_d n box in R^d (for constants a_1, ..., a_d > 0), and whose edges connect all vertices within Hamming distance one. We study t he size of the largest connected component of the subgraph generated by independently removing each vertex of the Hamming torus with probability 1-p. We show that if p=lambda / n, then there exists lambda_c > 0, which is the positive root of a degree d polynomial whose coefficients depend on a_1, ..., a_d, such that for lambda < lambda_c the largest component has O(log n) vertices (a.a.s. as n to infty), and for lambda > lambda_c the largest component has (1-q) lambda (prod_i a_i) n^{d-1} + o(n^{d-1}) vertices and the second largest component has O(log n) vertices (a.a.s.). An implicit formula for q < 1 is also given. Surprisingly, the value of lambda_c that we find is distinct from the critical value for the emergence of a giant component in the random edge subgraph of the Hamming torus. Additionally, we show that if p = c log n / n, then when c < (d-1) / (sum a_i) the site subgraph of the Hamming torus is not connected, and when c > (d-1) / (sum a_i) the subgraph is connected (a.a.s.). We also show that the subgraph is connected precisely when it contains no isolated vertices.
We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the - suitably centered - empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a rando m walk in an infinite valley. The construction of the infinite valley goes back to Golosov. As a consequence, we show weak convergence for both the maximal local time and the self-intersection local time of the RWRE and also determine the exact constant in the almost sure upper limit of the maximal local time.
We introduce a new type of random walk where the definition of edge reinforcement is very different from the one in the reinforced random walk models studied so far, and investigate its basic properties, such as null/positive recurrence, transience, and speed. Two basic cases will be dubbed impatient andageing random walks.
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w ithout the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically, we obtain a strong law of large numbers, a functional central limit theorem and large deviation estimates for the position of the random walker under the annealed law in a high density regime. The main obstacle is the intrinsic lack of monotonicity in higher-dimensional, non-nearest neighbour settings. Here we develop more general renormalization and renewal schemes that allow us to overcome this issue. As a second application of our methods, we provide an alternative proof of the ballistic behaviour of the front of (the discrete-time version of) the infection model introduced in [23].
We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Su rprisingly, the random walker may behave very differently depending on whether the underlying environment particles perform lazy or non-lazy random walks, which is related to a notion of permeability of the system. We also provide a strong law of large numbers, a functional central limit theorem and large deviation bounds under an ellipticity condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا