ﻻ يوجد ملخص باللغة العربية
We study a softly-broken supersymmetric model whose gauge symmetry is that of the standard model (SM) gauge group times an extra Abelian symmetry U(1). We call this gauge-extended model U(1) model, and we study a U(1) model with a secluded sector such that neutrinos acquire Dirac masses via higher-dimensional terms allowed by the U(1) invariance. In this model the mu term of the minimal supersymmetric model (MSSM) is dynamically induced by the vacuum expectation value of a singlet scalar. In addition, the model contains exotic particles necessary for anomaly cancellation, and extra singlet bosons for achieving correct Z/Z mass hierarchy. The neutrinos are charged under U(1), and thus, their production and decay channels differ from those in the MSSM in strength and topology. We implement the model into standard packages and perform a detailed analysis of sneutrino production and decay at the Large Hadron Collider, for various mass scenarios, concentrating on three types of signals: (1) 0lep+ MET,(2) 2lep+MET, and (3) 4lep + MET. We compare the results with those of the MSSM whenever possible, and analyze the SM background for each signal. The sneutrino production and decays provide clear signatures enabling distinction of the U(1) model from the MSSM at the LHC.
New physics at the weak scale that can couple to quarks typically gives rise to unacceptably large flavor changing neutral currents. An attractive way to avoid this problem is to impose the principal of minimal flavor violation (MFV). Recently it was
The hybrid N=1/N=2 supersymmetric model predicts scalar gluons (sgluons) as SUSY partners of the Dirac gluino. Their strikingly distinct phenomenology at the CERN Large Hadron Collider is discussed.
A very light scalar top (stop) superpartner is motivated by naturalness and electroweak baryogenesis. When the mass of the stop is less than the sum of the masses of the top quark and the lightest neutralino superpartner, as well as the of the masses
We study the LHC sensitivity to probe a long-lived heavy neutrino $N$ in the context of $Z$ models. We focus on displaced vertex signatures of $N$ when pair produced via a $Z$, decaying to leptons and jets inside the inner trackers of the LHC experim
We investigate the search for heavy Majorana neutrinos stemming from a composite model scenario at the upcoming LHC Run II at a center of mass energy of 13 TeV. While previous studies of the composite Majorana neutrino were focussed on gauge interact