ﻻ يوجد ملخص باللغة العربية
We find an interesting interplay between the range of the attractive part of the interaction potential and the extent of metastability (as measured by supersaturation) in gas-liquid nucleation. We explore and exploit this interplay to obtain new insight into nucleation phenomena. Just like its dependence on supersaturation (S), the free energy barrier of nucleation is found to depend strongly on the range of the interaction potential. Actually, the entire free energy surface, F(n), where n is the size of the liquid-like cluster, shows this dependence. The evidences and the reasons for this strong dependence are as follows. (i) The surface tension increases dramatically on increasing the range of interaction potential. In three dimensional Lennard-Jones system, the value of the surface tension increases from 0.494 for a cut-off of 2.5 {sigma} to 1.09 when the full range of the potential is involved. In two dimensional LJ system, the value of the line tension increases from 0.05 to 0.18, under the same variation of the potential range. (ii) The density of the gas phase at coexistence decreases while that of the liquid phase increases substantially on increasing the range of the interaction potential. (iii) As a result of the above, at a given supersaturation S, the size of the critical nucleus and the free energy barrier both increase with increase in the range of interaction potential. (iv) Surprisingly, however, we find that the functional form predicted by the classical nucleation theory (CNT) for the dependence of the free energy barrier on the size of the nucleus to remain valid except at the largest value of S studied. (v) The agreement between CNT prediction and simulated values of the barrier is supersaturation dependent and worsens with increase in the range of interaction potential, and increases above 10 kBT at the largest supersaturation that could be studied.
Nucleation at large metastability is still largely an unsolved problem, although is a problem of tremendous current interest, with wide practical value. It is well-accepted that the classical nucleation theory (CNT) fails to provide a qualitative pic
We study the dynamical behavior of a square lattice Ising model with exchange and dipolar interactions by means of Monte Carlo simulations. After a sudden quench to low temperatures we find that the system may undergo a coarsening process where strip
The random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media. It also models the dynamics of a tracer in a glassy system. These two perspectives, however, are fundamentally inconsistent. Arrest in the former is related to perco
Frustration of classical many-body systems can be used to distinguish ferromagnetic interactions from anti-ferromagnetic ones via the Toulouse conditions. A quantum version of the Toulouse conditions provides a similar classification based on the loc
We develop a theory in order to describe the effect of relaxation in a condensed medium upon the quantum decay of a metastable liquid near the spinodal at low temperatures. We find that both the regime and the rate of quantum nucleation strongly depe