ﻻ يوجد ملخص باللغة العربية
We measure the magnetic susceptibility of a Fermi gas with tunable interactions in the low-temperature limit and compare it to quantum Monte Carlo calculations. Experiment and theory are in excellent agreement and fully compatible with the Landau theory of Fermi liquids. We show that these measure- ments shed new light on the nature of the excitations of the normal phase of a strongly interacting Fermi gas.
We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms. Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the two lowest spin states and perform high-resolution Feshbach
Ultracold atomic Fermi gases present an opportunity to study strongly interacting Fermi systems in a controlled and uncomplicated setting. The ability to tune attractive interactions has led to the discovery of superfluidity in these systems with an
Wave-vector resolved radio frequency (rf) spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at Tc, and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting
We show that short-range pair correlations in a strongly interacting Fermi gas follow a simple universal law described by Tans relations. This is achieved through measurements of the static structure factor which displays a universal scaling proporti
We present an experimental investigation of the dynamic spin response of a strongly interacting Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is possible to measure the response in the spin and densi