ﻻ يوجد ملخص باللغة العربية
The motion of a large, neutrally buoyant, particle, freely advected by a turbulent flow is determined experimentally. We demonstrate that both the translational and angular accelerations exhibit very wide probability distributions, a manifestation of intermittency. The orientation of the angular velocity with respect to the trajectory, as well as the translational acceleration conditioned on the spinning velocity provide evidence of a lift force acting on the particle.
We investigate the effects of turbulent fluctuations on the Lagrangian statistics of absorption of a scalar field by tracer particles, as a model for nutrient uptake by suspended non-motile microorganisms. By means of extensive direct numerical simul
The statistics of velocity differences between very heavy inertial particles suspended in an incompressible turbulent flow is found to be extremely intermittent. When particles are separated by distances within the viscous subrange, the competition b
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are compa
Previous studies on nonspherical particle-fluid interaction were mostly confined to elongated fiber-like particles, which were observed to induce turbulence drag reduction. However, with the presence of tiny disk-like particles how wall turbulence is
Intermittency is a hallmark of turbulence, which exists not only in turbulent flows of classical viscous fluids but also in flows of quantum fluids such as superfluid $^4$He. Despite the established similarity between turbulence in classical fluids a