ﻻ يوجد ملخص باللغة العربية
Cold interacting fermions in two dimensions form exactly solvable Luttinger liquids, whose characteristic scaling exponents differ from those of conventional Fermi liquids. We use the AdS/CFT correspondence to discuss an equivalence between a class of helical, strongly coupled Luttinger liquids and fermions propagating in the background of a 3D black hole. The microscopic Lagrangian is explicitly known and the construction is fully embeddable in string theory. The retarded Green function at low temperature and energy arises from the geometry very near the black hole horizon. This structure is universal for all cold, charged liquids with a dual description in gravity.
We discuss the microscopic states of the extremal BTZ black holes. Degeneracy of the primary states corresponding to the extremal BTZ black holes in the boundary N=(4,4) SCFT is obtained by utilizing the elliptic genus and the unitary representation
We develop a theory of finite-temperature momentum-resolved tunneling spectroscopy (MRTS) for disordered, interacting two-dimensional topological-insulator edges. The MRTS complements conventional electrical transport measurement in characterizing th
We study the DC spin current induced into an unbiased quantum spin Hall system through a two-point contacts setup with time dependent electron tunneling amplitudes. By means of two external gates, it is possible to drive a current with spin-preservin
We investigate a one-dimensional electron liquid with two point scatterers of different strength. In the presence of electron interactions, the nonlinear conductance is shown to depend on the current direction. The resulting asymmetry of the transpor
We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-energy single particle states a