ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of GEM Detectors for Application in the CMS Muon Detection System

137   0   0.0 ( 0 )
 نشر من قبل Michael Tytgat
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The muon detection system of the Compact Muon Solenoid experiment at the CERN Large Hadron Collider is based on different technologies for muon tracking and triggering. In particular, the muon system in the endcap disks of the detector consists of Resistive Plate Chambers for triggering and Cathode Strip Chambers for tracking. At present, the endcap muon system is only partially instrumented with the very forward detector region remaining uncovered. In view of a possible future extension of the muon endcap system, we report on a feasibility study on the use of Micro-Pattern Gas Detectors, in particular Gas Electron Multipliers, for both muon triggering and tracking. Results on the construction and characterization of small tripleGas Electron Multiplier prototype detectors are presented.



قيم البحث

اقرأ أيضاً

We present analytical calculations, Finite Element Analysis modeling, and physical measurements of the interstrip capacitances for different potential strip geometries and dimensions of the readout boards for the GE2/1 triple-Gas Electron Multiplier detector in the CMS muon system upgrade. The main goal of the study is to find configurations that minimize the interstrip capacitances and consequently maximize the signal-to-noise ratio for the detector. We find agreement at the 1.5--4.8% level between the two methods of calculations and on the average at the 17% level between calculations and measurements. A configuration with halved strip lengths and doubled strip widths results in a measured 27--29% reduction over the original configuration while leaving the total number of strips unchanged. We have now adopted this design modification for all eight module types of the GE2/1 detector and will produce the final detector with this new strip design.
173 - D. Abbaneo , S. Bally , H. Postema 2010
In view of a possible extension of the forward CMS muon detector system and future LHC luminosity upgrades, Micro-Pattern Gas Detectors (MPGDs) are an appealing technology. They can simultaneously provide precision tracking and fast trigger informati on, as well as sufficiently fine segmentation to cope with high particle rates in the high-eta region at LHC and its future upgrades. We report on the design and construction of a full-size prototype for the CMS endcap system, the largest Triple-GEM detector built to-date. We present details on the 3D modeling of the detector geometry, the implementation of the readout strips and electronics, and the detector assembly procedure.
At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-eta region. An international collaboration is investigating the possibility of covering the 1.6 < |eta| < 2.4 region of the muon en dcaps with large-area triple-GEM detectors. Given their good spatial resolution, high rate capability, and radiation hardness, these micro-pattern gas detectors are an appealing option for simultaneously enhancing muon tracking and triggering capabilities in a future upgrade of the CMS detector. A general overview of this feasibility study will be presented. The design and construction of small (10times10 cm2) and full-size trapezoidal (1times0.5 m2) triple-GEM prototypes will be described. During detector assembly, different techniques for stretching the GEM foils were tested. Results from measurements with x-rays and from test beam campaigns at the CERN SPS will be shown for the small and large prototypes. Preliminary simulation studies on the expected muon reconstruction and trigger performances of this proposed upgraded muon system will be reported.
The LHC is undergoing a high luminosity upgrade, which is set to increase the instantaneous luminosity by at least a factor of five, resulting in a higher muon flux rate in the forward region, which will overwhelm the current trigger system of the CM S experiment. The ME0, a gas electron multiplier detector, is proposed for the Phase-2 Muon System Upgrade to help increase the muon acceptance and to control the Level 1 muon trigger rate. To lower the probability of HV discharges, the ME0 was designed with GEM foils that are segmented on both sides. Initial testing of the ME0 showed substantial crosstalk between readout sectors. Here, we investigate, characterize, and quantify the crosstalk in the detector, and estimate the performance of the chamber as a result of this crosstalk via simulation of the detector dead time, efficiency loss, and frontend electronics response. The results of crosstalk via signals produced by applying a square voltage pulse directly on the readout strips of the detector with a pulser are summarized, and the efficacy of various mitigation strategies are presented. The crosstalk is a result of capacitive coupling between the readout strips on the readout board and between the readout strips and the bottom of GEM3. The crosstalk also generally follows a pattern where the largest magnitude of crosstalk is within the same azimuthal readout segment in the detector and in the nearest horizontal segments. The use of bypass capacitors and larger HV segments successfully reduce the crosstalk: we observe a maximum decrease of crosstalk in sectors previously experiencing crosstalk from $(1.66pm0.03)%$ to $(1.11pm0.02)%$ with all HV segments connected in parallel on the bottom of GEM3, with an HV low-pass filter, and an HV divider. These mitigation strategies slightly increase crosstalk $big(hspace{-0.1cm}lessapprox 0.4%big)$ in readout sectors farther away.
The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to $6.10^{34} cm^{-2} s^{-1}$ . The region of the forward muon spectrometer ($|{eta}| > 1.6$) is not equipped with RPC stations. The increase of the expected particles rate up to $2 kHz/cm^{2}$ (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The actual RPC technology of CMS cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provides a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity (LR) glass is proposed to equip at least the two most far away of the four high ${eta}$ muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux is presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا