ترغب بنشر مسار تعليمي؟ اضغط هنا

On the electron scattering on the one-dimensional complexes: the vertex amplitudes method

127   0   0.0 ( 0 )
 نشر من قبل Anton Dolgikh V
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of electron scattering on the one-dimensional complexes is considered. We propose a novel theoretical approach to solution of the transport problem for a quantum graph. In the frame of the developed approach the solution of the transport problem is equivalent to the solution of a linear system of equations for the emph{vertex amplitudes} $mathbf{Psi}$. All major properties, such as transmission and reflection amplitudes, wave function on the graph, probability current, are expressed in terms of one $mathbf{Gamma}$-matrix that determines the transport through the graph. The transmission resonances are analyzed in detail and comparative analysis with known results is carried out.



قيم البحث

اقرأ أيضاً

We study the spectrum of the 1D Dirac Hamiltonian encompassing the bound and scattering states of a fermion distorted by a static background built from $delta$-function potentials. We distinguish between mass-spike and electrostatic $delta$-potential s. Differences in the spectra arising depending on the type of $delta$-potential studied are thoroughly explored.
We discuss a generalization of the conditions of validity of the interpolation method for the density of quenched free energy of mean field spin glasses. The condition is written just in terms of the $L^2$ metric structure of the Gaussian random vari ables. As an example of application we deduce the existence of the thermodynamic limit for a GREM model with infinite branches for which the classic conditions of validity fail.
612 - T. Gorin , G. V. Lopez 2007
This paper presents a powerfull method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group in [J. Math. Phys. 43, 3342 (2002)], and is here u sed to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas turn out to be of similar form. They are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows to obtain analytical expressions very efficiently. Those expressions contain the matrix dimension as a free parameter.
Three-particle complexes consisting of two holes in the completely filled zero electron Landau level and an excited electron in the unoccupied first Landau level are investigated in a quantum Hall insulator. The distinctive features of these three-pa rticle complexes are an electron-hole mass symmetry and the small energy gap of the quantum Hall insulator itself. Theoretical calculations of the trion energy spectrum in a quantizing magnetic field predict that, besides the ground state, trions feature a hierarchy of excited bound states. In agreement with the theoretical simulations, we observe new photoluminescence lines related to the excited trion states. A relatively small energy gap allows the binding of three-particle complexes with magnetoplasma oscillations and formation of plasmarons. The plasmaron properties are investigated experimentally.
In this paper, we provide new proofs of the existence and the condensation of Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with periodic boundary conditions and an arbitrary density of up arrows (per line) in the reg ime $Delta<1$. As an application, we provide a short, fully rigorous computation of the free energy of the six-vertex model on the torus, as well as an asymptotic expansion of the six-vertex partition functions when the density of up arrows approaches $1/2$. This latter result is at the base of a number of recent results, in particular the rigorous proof of continuity/discontinuity of the phase transition of the random-cluster model, the localization/delocalization behaviour of the six-vertex height function when $a=b=1$ and $cge1$, and the rotational invariance of the six-vertex model and the Fortuin-Kasteleyn percolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا