ﻻ يوجد ملخص باللغة العربية
This paper presents a powerfull method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group in [J. Math. Phys. 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas turn out to be of similar form. They are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows to obtain analytical expressions very efficiently. Those expressions contain the matrix dimension as a free parameter.
This paper is concerned with integrals which integrands are the monomials of matrix elements of irreducible representations of classical groups. Based on analysis on Young tableaux, we discuss some related duality theorems and compute the asymptotics
We consider random stochastic matrices $M$ with elements given by $M_{ij}=|U_{ij}|^2$, with $U$ being uniformly distributed on one of the classical compact Lie groups or associated symmetric spaces. We observe numerically that, for large dimensions,
The problem of electron scattering on the one-dimensional complexes is considered. We propose a novel theoretical approach to solution of the transport problem for a quantum graph. In the frame of the developed approach the solution of the transport
begin{abstract} We show that if the initial profile $qleft( xright) $ for the Korteweg-de Vries (KdV) equation is essentially semibounded from below and $int^{infty }x^{5/2}leftvert qleft( xright) rightvert dx<infty,$ (no decay at $-infty$ is require
We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers-Wannier duality to anisotropic correlation functio