ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD62623

40   0   0.0 ( 0 )
 نشر من قبل Florentin Millour
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Florentin Millour




اسأل ChatGPT حول البحث

Context. To progress in the understanding of evolution of massive stars one needs to constrain the mass-loss and determine the phenomenon responsible for the ejection of matter an its reorganization in the circumstellar environment Aims. In order to test various mass-ejection processes, we probed the geometry and kinematics of the dust and gas surrounding the A[e] supergiant HD 62623. Methods. We used the combined high spectral and spatial resolution covered by the VLTI/AMBER instrument. Thanks to a new multiwavelength optical/IR interferometry imaging technique, we reconstructed the first velocity-resolved images with a milliarcsecond resolution in the infrared domain. Results. We managed to disentangle the dust and gas emission in the HD 62623 circumstellar disc.We measured the dusty disc inner inner rim, i.e. 6 mas, constrained the inclination angle and the position angle of the major-axis of the disc.We also measured the inner gaseous disc extension (2 mas) and probed its velocity field thanks to AMBER high spectral resolution. We find that the expansion velocity is negligible, and that Keplerian rotation is a favoured velocity field. Such a velocity field is unexpected if fast rotation of the central star alone is the main mechanism of matter ejection. Conclusions. As the star itself seems to rotate below its breakup-up velocity, rotation cannot explain the formation of the dense equatorial disc. Moreover, as the expansion velocity is negligible, radiatively driven wind is also not a suitable explanation to explain the disc formation. Consequently, the most probable hypothesis is that the accumulation of matter in the equatorial plane is due to the presence of the spectroscopic low mass companion.

قيم البحث

اقرأ أيضاً

84 - Laura G. Book 2009
We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects (YSOs) reveal the current ongoing star formation. Distributions of ionized, H I, and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.
The combination of high resolution and sensitivity offered by ALMA is revolutionizing our understanding of protoplanetary discs, as their bulk gas and dust distributions can be studied independently. In this paper we present resolved ALMA observation s of the continuum emission ($lambda=1.3$ mm) and CO isotopologues ($^{12}$CO, $^{13}$CO, C$^{18}$O $J=2-1$) integrated intensity from the disc around the nearby ($d = 162$ pc), intermediate mass ($M_{star}=1.67,M_{odot}$) pre-main-sequence star CQ Tau. The data show an inner depression in continuum, and in both $^{13}$CO and C$^{18}$O emission. We employ a thermo-chemical model of the disc reproducing both continuum and gas radial intensity profiles, together with the disc SED. The models show that a gas inner cavity with size between 15 and 25 au is needed to reproduce the data with a density depletion factor between $sim 10^{-1}$ and $sim 10^{-3}$. The radial profile of the distinct cavity in the dust continuum is described by a Gaussian ring centered at $R_{rm dust}=53,$au and with a width of $sigma=13,$au. Three dimensional gas and dust numerical simulations of a disc with an embedded planet at a separation from the central star of $sim20,$au and with a mass of $sim 6textrm{-} 9,M_{rm Jup}$ reproduce qualitatively the gas and dust profiles of the CQ Tau disc. However, a one planet model appears not to be able to reproduce the dust Gaussian density profile predicted using the thermo-chemical modeling.
96 - N.D. Thureau 2009
We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed I nterferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8 year period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data shows that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24 mas, an axis ratio r = 0.39 +/- 0.03 and a position angle theta = 35 +/- 2 deg.
Mass-loss in massive stars plays a critical role in their evolution, although the precise mechanism(s) responsible - radiatively driven winds, impulsive ejection and/or binary interaction -remain uncertain. In this paper we present ALMA line and cont inuum observations of the supergiant B[e] star Wd1-9, a massive post-Main Sequence object located within the starburst cluster Westerlund 1. We find it to be one of the brightest stellar point sources in the sky at millimetre wavelengths, with (serendipitously identified) emission in the H41alpha radio recombination line. We attribute these properties to a low velocity (~100 km/s) ionised wind, with an extreme mass-loss rate 6.4x10^-5(d/5kpc)^1.5 Msol/yr. External to this is an extended aspherical ejection nebula indicative of a prior phase of significant mass-loss. Taken together, the millimetre properties of Wd1-9 show a remarkable similarity to those of the highly luminous stellar source MWC349A.We conclude that these objects are interacting binaries evolving away from the main sequence and undergoing rapid case-A mass transfer. As such they - and by extension the wider class of supergiant B[e] stars - may provide a unique window into the physics of a process that shapes the life-cycle of ~70% of massive stars found in binary systems.
HD 50138 is a B[e] star surrounded by a large amount of circumstellar gas and dust. Its spectrum shows characteristics which may indicate either a pre- or a post-main-sequence system. Mapping the kinematics of the gas in the inner few au of the syste m contributes to a better understanding of its physical nature. We present the first high spatial and spectral resolution interferometric observations of the Br-gamma line of HD~50138, obtained with VLTI/AMBER. The line emission originates from a region more compact (up to 3 au) than the continuum-emitting region. Blue- and red-shifted emission originates from the two different hemispheres of an elongated structure perpendicular to the polarization angle. The velocity of the emitting medium decreases radially. An overall offset along the NW direction between the line- and continuum-emitting regions is observed. We compare the data with a geometric model of a thin Keplerian disk and a spherical halo on top of a Gaussian continuum. Most of the data are well reproduced by this model, except for the variability, the global offset and the visibility at the systemic velocity. The evolutionary state of the system is discussed; most diagnostics are ambiguous and may point either to a post-main-sequence or a pre-main-sequence nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا