ترغب بنشر مسار تعليمي؟ اضغط هنا

Cohomologous Harmonic Cochains

39   0   0.0 ( 0 )
 نشر من قبل Anil Hirani
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe algorithms for finding harmonic cochains, an essential ingredient for solving elliptic partial differential equations in exterior calculus. Harmonic cochains are also useful in computational topology and computer graphics. We focus on finding harmonic cochains cohomologous to a given cocycle. Amongst other things, this allows localization near topological features of interest. We derive a weighted least squares method by proving a discrete Hodge-deRham theorem on the isomorphism between the space of harmonic cochains and cohomology. The solution obtained either satisfies the Whitney form finite element exterior calculus equations or the discrete exterior calculus equations for harmonic cochains, depending on the discrete Hodge star used.

قيم البحث

اقرأ أيضاً

184 - Vincent Divol 2019
Despite the obvious similarities between the metrics used in topological data analysis and those of optimal transport, an optimal-transport based formalism to study persistence diagrams and similar topological descriptors has yet to come. In this art icle, by considering the space of persistence diagrams as a space of discrete measures, and by observing that its metrics can be expressed as optimal partial transport problems, we introduce a generalization of persistence diagrams, namely Radon measures supported on the upper half plane. Such measures naturally appear in topological data analysis when considering continuous representations of persistence diagrams (e.g. persistence surfaces) but also as limits for laws of large numbers on persistence diagrams or as expectations of probability distributions on the persistence diagrams space. We explore topological properties of this new space, which will also hold for the closed subspace of persistence diagrams. New results include a characterization of convergence with respect to Wasserstein metrics, a geometric description of barycenters (Frechet means) for any distribution of diagrams, and an exhaustive description of continuous linear representations of persistence diagrams. We also showcase the strength of this framework to study random persistence diagrams by providing several statistical results made meaningful thanks to this new formalism.
We show that determining the crossing number of a link is NP-hard. For some weaker notions of link equivalence, we also show NP-completeness.
73 - Daniel Stern 2019
For a harmonic map $u:M^3to S^1$ on a closed, oriented $3$--manifold, we establish the identity $$2pi int_{thetain S^1}chi(Sigma_{theta})geq frac{1}{2}int_{thetain S^1}int_{Sigma_{theta}}(|du|^{-2}|Hess(u)|^2+R_M)$$ relating the scalar curvature $R_M $ of $M$ to the average Euler characteristic of the level sets $Sigma_{theta}=u^{-1}{theta}$. As our primary application, we extend the Kronheimer--Mrowka characterization of the Thurston norm on $H_2(M;mathbb{Z})$ in terms of $|R_M^-|_{L^2}$ and the harmonic norm to any closed $3$--manifold containing no nonseparating spheres. Additional corollaries include the Bray--Brendle--Neves rigidity theorem for the systolic inequality $(min R_M)sys_2(M)leq 8pi$, and the well--known result of Schoen and Yau that $T^3$ admits no metric of positive scalar curvature.
120 - Tianqi Wu , Shing-Tung Yau 2020
We propose a novel meshless method to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface, or a point cloud approximation, we simply use the standard cubic lattice to a pproximate its $epsilon$-neighborhood. Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature. We propose algorithms and numerical examples for closed surfaces and topological disks.
Some methods based on simple regularizing geometric element transformations have heuristically been shown to give runtime efficient and quality effective smoothing algorithms for meshes. We describe the mathematical framework and a systematic approach to global optimization-bas
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا