ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing Harmonic Maps and Conformal Maps on Point Clouds

121   0   0.0 ( 0 )
 نشر من قبل Tianqi Wu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel meshless method to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface, or a point cloud approximation, we simply use the standard cubic lattice to approximate its $epsilon$-neighborhood. Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature. We propose algorithms and numerical examples for closed surfaces and topological disks.



قيم البحث

اقرأ أيضاً

73 - Daniel Stern 2019
For a harmonic map $u:M^3to S^1$ on a closed, oriented $3$--manifold, we establish the identity $$2pi int_{thetain S^1}chi(Sigma_{theta})geq frac{1}{2}int_{thetain S^1}int_{Sigma_{theta}}(|du|^{-2}|Hess(u)|^2+R_M)$$ relating the scalar curvature $R_M $ of $M$ to the average Euler characteristic of the level sets $Sigma_{theta}=u^{-1}{theta}$. As our primary application, we extend the Kronheimer--Mrowka characterization of the Thurston norm on $H_2(M;mathbb{Z})$ in terms of $|R_M^-|_{L^2}$ and the harmonic norm to any closed $3$--manifold containing no nonseparating spheres. Additional corollaries include the Bray--Brendle--Neves rigidity theorem for the systolic inequality $(min R_M)sys_2(M)leq 8pi$, and the well--known result of Schoen and Yau that $T^3$ admits no metric of positive scalar curvature.
140 - Elsa Ghandour , Ye-Lin Ou 2017
Harmonic morphisms are maps between Riemannian manifolds that pull back harmonic functions to harmonic functions. These maps are characterized as horizontally weakly conformal harmonic maps and they have many interesting links and applications to sev eral areas in mathematics (see the book by Baird and Wood for details). In this paper, we study generalized harmonic morphisms which are defined to be maps between Riemannian manifolds that pull back harmonic functions to biharmonic functions. We obtain some characterizations of generalized harmonic morphisms into a Euclidean space and give two methods of constructions that can be used to produce many examples of generalized harmonic morphisms which are not harmonic morphisms. We also give a complete classification of generalized harmonic morphisms among the projections of a warped product space, which provides infinitely many examples of proper biharmonic Riemannian submersions and conformal submersions from a warped product manifold.
The absence of interesting harmonic sections for the Sasaki and Cheeger-Gromoll metrics has led to the consideration of alternatives, for example in the form of a two-parameter family of natural metrics shown to relax existence conditions for harmoni city. This article investigates harmonic Killing vector fields, proves their non-existence on S^2, obtains rigidity results for harmonic gradient vector fields on the two-sphere, classifies spherical quadratic gradient fields in all dimensions and determines the tension field, concluding with the discovery of a family of metrics making Hopf vector fields harmonic maps on S^{2n+1}.
98 - Yong Luo , Ye-Lin Ou 2018
In this paper, we prove that the class of bi-f-harmonic maps and that of f-biharmonic maps from a conformal manifold of dimension not equal to 2 are the same (Theorem 1.1). We also give several results on nonexistence of proper bi-f-harmonic maps and f-biharmonic maps from complete Riemannian manifolds into nonpositively curved Riemannian manifolds. These include: any bi-f-harmonic map from a compact manifold into a non-positively curved manifold is f-harmonic (Theorem 1.6), and any f-biharmonic (respectively, bi-f-harmonic) map with bounded f and bounded f-bienrgy (respectively, bi-f-energy) from a complete Riemannian manifold into a manifold of strictly negative curvature has rank < 2 everywhere (Theorems 2.2 and 2.3).
360 - Ye-Lin Ou , Tiffany Troutman , 2011
We propose a new notion called emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $pto infty $. Infinity harmoncity appears in many familiar contexts. For example, metric projection onto the orbit of an isometric group action from a tubular neighborhood is infinity harmonic. Unfortunately, infinity-harmonicity is not preserved under composition. Those infinity harmonic maps that always preserve infinity harmonicity under pull back are called infinity harmonic morphisms. We show that infinity harmonic morphisms are precisely horizontally homothetic mas. Many example of infinity-harmonic maps are given, including some very important and well-known classes of maps between Riemannian manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا