ﻻ يوجد ملخص باللغة العربية
We uniformly analyze 136 optically detected PNe and candidates from the GLIMPSE-I survey in order to to develop robust, multi-wavelength, classification criteria to augment existing diagnostics and provide pure PN samples. PNe represent powerful astrophysical probes. They are important dynamical tracers, key sources of ISM chemical enrichment, windows into late stellar evolution, and potent cosmological yardsticks. But their utility depends on separating them unequivocally from the many nebular mimics which can strongly resemble bona fide PNe in traditional optical images and spectra. We merge new PNe from the carefully evaluated, homogeneous MASH-I and MASH-II surveys, which offer a wider evolutionary range of PNe than hitherto available, with previously known PNe classified by SIMBAD. Mid-infrared (MIR) measurements vitally complement optical data because they reveal other physical processes and morphologies via fine-structure lines, molecular bands and dust. MIR colour-colour planes, optical emission line ratios and radio fluxes show the unambiguous classification of PNe to be complex, requiring all available evidence. Statistical trends provide predictive value and we offer quantitative MIR criteria to determine whether an emission nebula is most likely to be a PN or one of the frequent contaminants such as compact HII regions or symbiotic systems. Prerequisites have been optical images and spectra but MIR morphology, colours, environment and a candidates MIR/radio flux ratio provide a more rigorous classification. Our ultimate goal is to recognize PNe using only MIR and radio characteristics, enabling us to trawl for PNe effectively even in heavily obscured regions of the Galaxy.
We construct HI~absorption spectra for 18 planetary nebulae (PNe) and their background sources using the data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNe, among which 15 objects kinematic distances a
We present near-infrared spectroscopic observations of massive stars in three stellar clusters located in the direction of the inner Galaxy. One of them, the Quartet, is a new discovery while the other two were previously reported as candidate cluste
We have used the Wide Field Spectrograph on the Australian National University 2.3-m telescope to perform the integral field spectroscopy for a sample of the Galactic planetary nebulae. The spatially resolved velocity distributions of the H$alpha$ em
We present near-infrared (IR) spectra of two planetary nebula (PN) candidates in close lines of sight toward the Galactic center (GC) using the Gemini Near-Infrared Spectrograph (GNIRS) at Gemini North. High-resolution images from radio continuum and
The San Pedro Martir kinematic catalogue of galactic planetary nebulae provides spatially resolved, long-slit Echelle spectra for about 600 planetary nebulae. The data are presented wavelength calibrated and corrected for heliocentric motion. For mos