ﻻ يوجد ملخص باللغة العربية
We present near-infrared spectroscopic observations of massive stars in three stellar clusters located in the direction of the inner Galaxy. One of them, the Quartet, is a new discovery while the other two were previously reported as candidate clusters identified on mid-infrared Spitzer images (GLIMPSE20 and GLIMPSE13). Using medium-resolution (R=900-1320) H and K spectroscopy, we firmly establish the nature of the brightest stars in these clusters, yielding new identifications of an early WC and two Ofpe/WN9 stars in the Quartet and an early WC star in GLIMPSE20. We combine this information with the available photometric measurements from 2MASS, to estimate cluster masses, ages, and distances. The presence of several massive stars places the Quartet and GLIMPSE20 among the small sample of known Galactic stellar clusters with masses of a few 10^3 Msun, and ages from 3 to 8 Myr. We estimate a distance of about 3.5 kpc for Glimpse 20, and 6.0 kpc for Quartet. The large number of giant stars identified in GLIMPSE13 indicates that it is another massive (~ 6500 Msun) cluster, but older, with an age between 30 and 100 Myr, at a distance of about 3 kpc.
We present SOAR/OSIRIS cross-dispersed NIR integrated spectra of 12 Galactic globular clusters that are employed to test Maraston (2005, M05) NIR EPS models, and to provide spectral observational constraints to calibrate future models. We measured Ew
We discuss images of the star clusters GLIMPSE C01 (GC01) and GLIMPSE C02 (GC02) that were recorded with the Subaru IRCS. Distortions in the wavefront were corrected with the RAVEN adaptive optics (AO) science demonstrator, allowing individual stars
We uniformly analyze 136 optically detected PNe and candidates from the GLIMPSE-I survey in order to to develop robust, multi-wavelength, classification criteria to augment existing diagnostics and provide pure PN samples. PNe represent powerful astr
A new generation of spectral synthesis models has been developed in the recent years, but there is no matching -- in terms of quality and resolution -- set of template galaxy spectra for testing and refining the new models. Our main goal is to find a
We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 mic; R~100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the H