ﻻ يوجد ملخص باللغة العربية
Using the ab initio FLAPW-GGA method we examine the electronic and magnetic properties of nitrogen-doped non-magnetic sesquioxide La2O3 emphasizing the role of doping sites in the occurrence of d0-magnetism. We predict the magnetization of La2O3 induced by nitrogen impurity in both octahedral and tetrahedral sites of the oxygen sublattice. The most interesting results are that (i) the total magnetic moments (about 1 {mu}B per supercells) are independent of the doping site, whereas (ii) the electronic spectra of these systems differ drastically: La2O3:N with six-fold coordinated nitrogen behaves as a narrow-band-gap magnetic semiconductor, whereas with four-fold coordinated nitrogen is predicted to be a magnetic half-metal. This effect is explained taking into account the differences in N-2pz versus N-2px,y orbital splitting for various doping sites. Thus, the type of the doping site is one of the essential factors for designing of new d0-magnetic materials with promising properties.
The complicated electronic, magnetic, and colossal magnetoresistant (CMR) properties of Sr and Ca doped lanthanum manganites can be understood by spin-polarized first-principles calculations. The electronic properties can be attributed to a detailed
High Curie temperature of 900 K has been reported in Cr-doped AlN diluted magnetic semiconductors prepared by various methods, which is exciting for spintronic applications. It is believed that N defects play important roles in achieving the high tem
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi
Two-dimensional (2D) multiferroics exhibit cross-control capacity between magnetic and electric responses in reduced spatial domain, making them well suited for next-generation nanoscale devices; however, progress has been slow in developing material