ﻻ يوجد ملخص باللغة العربية
In this thesis we study some aspects of cosmology and black holes using field theoretic techniques. In second chapter, we present Lagrangian formulation for the non-relativistic as well as relativistic generalized Chaplygin gas (GCG). In rest of the thesis we discuss alternative approaches to compute the fluxes of Hawking radiation. These methods are based on covariant gauge/gravitational anomalies and chiral effective action. We also discuss a criterion to differentiate various black hole vacua within the framework of covariant anomaly approach.
We review and extend recent progress on the quantum description of near-extremal black holes in the language of effective quantum field theory. With black holes in Einstein-Maxwell theory as the main example, we derive the Schwarzian low energy descr
While no-hair theorems forbid isolated black holes from possessing permanent moments beyond their mass, electric charge, and angular momentum, research over the past two decades has demonstrated that a black hole interacting with a time-dependent bac
We study different aspects of quantum field theory at finite density using methods from quantum information theory. For simplicity we focus on massive Dirac fermions with nonzero chemical potential, and work in $1+1$ space-time dimensions. Using the
The metric algebroid proposed by Vaisman (the Vaisman algebroid) governs the gauge symmetry algebra generated by the C-bracket in double field theory (DFT). We show that the Vaisman algebroid is obtained by an analogue of the Drinfeld double of Lie a
We analyze spherical and odd-parity linear perturbations of hairy black holes with a minimally coupled scalar field.