ﻻ يوجد ملخص باللغة العربية
In this paper, we study the higher Hochschild functor and its relationship with factorization algebras and topological chiral homology. To this end, we emphasize that the higher Hochschild complex is a $(infty,1)$-functor from the category $hsset times hcdga$ to the category $hcdga$ (where $hsset$ and $hcdga$ are the $(infty,1)$-categories of simplicial sets and commutative differential graded algebras) and give an axiomatic characterization of this functor. From the axioms we deduce several properties and computational tools for this functor. We study the relationship between the higher Hochschild functor and factorization algebras by showing that, in good cases, the Hochschild functor determines a constant commutative factorization algebra. Conversely, every constant commutative factorization algebra is naturally equivalent to a Hochschild chain factorization algebra. Similarly, we study the relationship between the above concepts and topological chiral homology. In particular, we show that on their common domains of definition, the higher Hochschild functor is naturally equivalent to topological chiral homology. Finally, we prove that topological chiral homology determines a locally constant factorization algebra and, further, that this functor induces an equivalence between locally constant factorization algebras on a manifold and (local system of) $E_n$-algebras. We also deduce that Hochschild chains and topological chiral homology satisfies an exponential law, i.e., a Fubini type Theorem to compute them on products of manifolds.
We consider derived invariants of varieties in positive characteristic arising from topological Hochschild homology. Using theory developed by Ekedahl and Illusie-Raynaud in their study of the slope spectral sequence, we examine the behavior under de
We show that an important classical fixed point invariant, the Reidemeister trace, arises as a topological Hochschild homology transfer. This generalizes a corresponding classical result for the Euler characteristic and is a first step in showing the
We determine higher topological Hochschild homology of rings of integers in number fields with coefficients in suitable residue fields. We use the iterative description of higher THH for this and Postnikov arguments that allow us to reduce the necess
We calculate the integral homotopy groups of THH(l) at any prime and of THH(ko) at p=2, where l is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) rightarrow THH(E(2))rightarrow ove