ترغب بنشر مسار تعليمي؟ اضغط هنا

Homogeneous photospheric parameters and C abundances in G and K nearby stars with and without planets

60   0   0.0 ( 0 )
 نشر من قبل Ronaldo da Silva
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a determination of photospheric parameters and C abundances for a sample of 172 G and K dwarfs, subgiants, and giants with and without detected planets in the solar neighbourhood. The analysis was based on high S/N and high resolution spectra observed with the ELODIE spectrograph, and for which the observational data was publicly available. We intend to contribute precise and homogeneous C abundances in studies that compare the behaviour of light elements in stars, hosting planets or not. This will bring new arguments to the discussion of possible anomalies that have been suggested and will contribute to a better understanding of different planetary formation process. The photospheric parameters were computed through the excitation potential, equivalent widths, and ionisation equilibrium of Fe lines selected in the spectra. C abundances were derived from spectral synthesis applied to prominent molecular head bands of C_2 Swan (5128 and 5165) and to a C atomic line (5380.3). The distribution of [C/Fe] vs. [Fe/H] shows no difference in the behaviour of planet-host stars in comparison with stars for which no planet was detected, for both dwarf and giant subsamples. This result is in agreement with the hypothesis of primordial origin for the chemical abundances presently observed instead of self-enrichment during the planetary system formation and evolution. Additionally, giants are clearly depleted in [C/Fe] (~0.14 dex) when compared with dwarfs, which is probably related to evolution-induced mixing of H-burning products in the envelope of evolved stars. Subgiants, although in small number, seems to follow the same C abundance distribution as dwarfs. We also analysed the kinematics of the sample stars that, in majority, are members of the Galaxys thin disc. Finally, comparisons with other analogue studies were performed and, within the uncertainties, showed good agreement.

قيم البحث

اقرأ أيضاً

We have been analyzing a large sample of solar-like stars with and without planets in order to homogeneously measure their photospheric parameters and Carbon abundances. Our sample contains around 200 stars in the solar neighborhood observed with the ELODIE spectrograph, for which the observational data are publicly available. We performed spectral synthesis of prominent bands of C$_{2}$ and C I lines, aiming to accurately obtain the C abundances. We intend to contribute homogeneous results to studies that compare elemental abundances in stars with and without known planets. New arguments will be brought forward to the discussion of possible chemical anomalies that have been suggested in the literature, leading us to a better understanding of the planetary formation process. In this work we focus on the C abundances in both stellar groups of our sample.
We have analyzed high-resolution and high signal-to-noise ratio optical spectra of nearby FGK stars with and without detected giant planets in order to homogeneously measure their photospheric parameters, mass, age, and the abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn, Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar neighborhood (up to the distance of 100 pc), out of which 140 are dwarfs, 29 are subgiants, and 140 are giants. The photospheric parameters are derived from the equivalent widths of Fe I and Fe II lines. Masses and ages come from the interpolation in evolutionary tracks and isochrones on the HR diagram. The abundance determination is based on the equivalent widths of selected atomic lines of the refractory elements and on the spectral synthesis of C_2, CN, C I, O I, and Na I features. We apply a set of statistical methods to analyze the abundances derived for the three subsamples. Our results show that: i) giant stars systematically exhibit underabundance in [C/Fe] and overabundance in [N/Fe] and [Na/Fe] in comparison with dwarfs, a result that is normally attributed to evolution-induced mixing processes in the envelope of evolved stars; ii) for solar analogs only, the abundance trends with the condensation temperature of the elements are correlated with age and anticorrelated with the surface gravity, which is in agreement with recent studies; iii) as in the case of [Fe/H], dwarf stars with giant planets are systematically enriched in [X/H] for all the analyzed elements, except for O and Ba (the former due to limitations of statistics), confirming previous findings in the literature that not only iron has an important relation with the planetary formation; and iv) giant planet hosts are also significantly overabundant for the same metallicity when the elements from Mg to Cu are combined together.
It has been occasionally suggested that Fe abundances of K dwarfs derived from Fe I and Fe II lines show considerable discrepancies and oxygen abundances determined from high-excitation O I 7771-5 triplet lines are appreciably overestimated (the prob lem becoming more serious towards lower Teff), which however has not yet been widely confirmed. With an aim to clarify this issue, we spectroscopically determined the atmospheric parameters of 148 G-K dwarfs (Hyades cluster stars and field stars) by assuming the classical Fe I/Fe II ionization equilibrium as usual, and determined their oxygen abundances by applying the non-LTE spectrum fitting analysis to O I 7771-5 lines. It turned out that the resulting parameters did not show any significant inconsistency with those determined by other methods (for example, the mean differences in Teff and log g from the well-determined solutions of Hyades dwarfs are mostly <~100K and <~0.1dex). Likewise, the oxygen abundances of Hyades stars are around [O/H]~+0.2dex (consistent with the metallicity of this cluster) without exhibiting any systematic Teff-dependence. Accordingly, we conclude that parameters can be spectroscopically evaluated to a sufficient precision in the conventional manner (based on the Saha-Boltzmann equation for Fe I/Fe II) and oxygen abundances can be reliably determined from the O I 7771-5 triplet for K dwarfs as far as stars of Teff>~4500K are concerned. We suspect that previously reported strongly Teff-dependent discrepancies may have stemmed mainly from overestimation of weak-line strengths and/or improper Teff scale.
61 - M. Bejger 2012
The discovery of a 2 Msun neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observ ational result, several equations of state containing hyperons are consistent with it. We study global properties of stars using equations of state containing hyperons, and compare them to those without hyperons to find similarities, differences, and limits that can be compared with the astrophysical observations. Rotating, axisymmetric, and stationary stellar configurations in general relativity are obtained, and their global parameters are studied. Approximate formulae describing the behavior of the maximum and minimum stellar mass, compactness, surface redshifts, and moments of inertia as functions of spin frequency are provided. We also study the thin disk accretion and compare the spin-up evolution of stars with different moments of inertia.
The asteroseismic and planetary studies, like all research related to stars, need precise and accurate stellar atmospheric parameters as input. We aim at deriving the effective temperature (Teff), the surface gravity (log g), the metallicity ([Fe/H]) , the projected rotational velocity (v sin i) and the MK type for 169 F, G, K, and M-type Kepler targets which were observed spectroscopically from the ground with five different instruments. We use two different spectroscopic methods to analyse 189 high-resolution, high-signal-to-noise spectra acquired for the 169 stars. For 67 stars, the spectroscopic atmospheric parameters are derived for the first time. KIC 9693187 and 11179629 are discovered to be double-lined spectroscopic binary systems. The results obtained for those stars for which independent determinations of the atmospheric parameters are available in the literature are used for a comparative analysis. As a result, we show that for solar-type stars the accuracy of present determinations of atmospheric parameters is +/- 150 K in Teff, +/- 0.15 dex in [Fe/H], and +/-? 0.3 dex in log g. Finally, we confirm that the curve-of-growth analysis and the method of spectral synthesis yield systematically different atmospheric parameters when they are applied to stars hotter than 6,000 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا