ﻻ يوجد ملخص باللغة العربية
A method is given to compute an approximation to the noise kernel, defined as the symmetrized connected 2-point function of the stress tensor, for the conformally invariant scalar field in any spacetime conformal to an ultra-static spacetime for the case in which the field is in a thermal state at an arbitrary temperature. The most useful applications of the method are flat space where the approximation is exact and Schwarzschild spacetime where the approximation is better than it is in most other spacetimes. The two points are assumed to be separated in a timelike or spacelike direction. The method involves the use of a Gaussian approximation which is of the same type as that used by Page to compute an approximate form of the stress tensor for this field in Schwarzschild spacetime. All components of the noise kernel have been computed exactly for hot flat space and one component is explicitly displayed. Several components have also been computed for Schwarzschild spacetime and again one component is explicitly displayed.
In this research note we introduce a new approximation of photon geodesics in Schwarzschild spacetime which is especially useful to describe highly bent trajectories, for which the angle between the initial emission position and the line of sight to
We provide expansions of the Detweiler-Whiting singular field for motion along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We transcribe these results into mode-sum regularization parameters, computing previously unknown te
The main aim of this paper is twofold. (1) Exact solutions of a scalar field in the Schwarzschild spacetime are presented. The exact wave functions of scattering states and bound-states are presented. Besides the exact solution, we also provide expli
An integral equation method for scalar scattering in Schwarzschild spacetime is constructed. The zeroth-order and first-order scattering phase shift is obtained.
The retarded Green function for linear field perturbations of black hole spacetimes is notoriously difficult to calculate. One of the difficulties is due to a Dirac-$delta$ divergence that the Green function possesses when the two spacetime points ar