ترغب بنشر مسار تعليمي؟ اضغط هنا

Arithmetic Motivic Poincare series of toric varieties

145   0   0.0 ( 0 )
 نشر من قبل Pedro Daniel Gonzalez Perez
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The arithmetic motivic Poincare series of a variety $V$ defined over a field of characteristic zero, is an invariant of singularities which was introduced by Denef and Loeser by analogy with the Serre-Oesterle series in arithmetic geometry. They proved that this motivic series has a rational form which specializes to the Serre-Oesterle series when $V$ is defined over the integers. This invariant, which is known explicitly for a few classes of singularities, remains quite mysterious. In this paper we study this motivic series when $V$ is an affine toric variety. We obtain a formula for the rational form of this series in terms of the Newton polyhedra of the ideals of sums of combinations associated to the minimal system of generators of the semigroup of the toric variety. In particular, we deduce explicitly a finite set of candidate poles for this invariant.



قيم البحث

اقرأ أيضاً

We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat hbb{Q}}$ of $X$. The ramification over the invariant divisor and the singular invariant divisors of $X$ impose topological constraints on the automorphisms of $X_{mathbb{Q}}$. Considering this proalgebraic space as the toric functor on the adelic complex plane multiplicative semigroup, we calculate its automorphic group. Moreover we show that its vector bundle category is the direct limit of the respective categories of the finite toric varieties coverings defining the proalgebraic toric-completion.
We give a characterization of all complete smooth toric varieties whose rational homotopy is of elliptic type. All such toric varieties of complex dimension not more than three are explicitly described.
We construct a period regulator for motivic cohomology of an algebraic scheme over a subfield of the complex numbers. For the field of algebraic numbers we formulate a period conjecture for motivic cohomology by saying that this period regulator is s urjective. Showing that a suitable Betti--de Rham realization of 1-motives is fully faithful we can verify this period conjecture in several cases. The divisibility properties of motivic cohomology imply that our conjecture is a neat generalization of the classical Grothendieck period conjecture for algebraic cycles on smooth and proper schemes. These divisibility properties are treated in an appendix by B. Kahn (extending previous work of Bloch and Colliot-Thel`ene--Raskind).
Motivated by the study of the secant variety of the Segre-Veronese variety we propose a general framework to analyze properties of the secant varieties of toric embeddings of affine spaces defined by simplicial complexes. We prove that every such sec ant is toric, which gives a way to use combinatorial tools to study singularities. We focus on the Segre-Veronese variety for which we completely classify their secants that give Gorenstein or $mathbb Q$-Gorenstein varieties. We conclude providing the explicit description of the singular locus.
143 - Gottfried Barthel 1999
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant o pen subsets), equivariant intersection cohomology provides a sheaf (of graded modules over a sheaf of graded rings) on that fan space. We prove that this sheaf is a minimal extension sheaf, i.e., that it satisfies three relatively simple axioms which are known to characterize such a sheaf up to isomorphism. In the verification of the second of these axioms, a key role is played by equivariantly formal toric varieties, where equivariant and usual (non-equivariant) intersection cohomology determine each other by Kunneth type formulae. Minimal extension sheaves can be constructed in a purely formal way and thus also exist for non-rational fans. As a consequence, we can extend the notion of an equivariantly formal fan even to this general setup. In this way, it will be possible to introduce virtual intersection cohomology for equivariantly formal non-rational fans.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا