ﻻ يوجد ملخص باللغة العربية
Motivated by the study of the secant variety of the Segre-Veronese variety we propose a general framework to analyze properties of the secant varieties of toric embeddings of affine spaces defined by simplicial complexes. We prove that every such secant is toric, which gives a way to use combinatorial tools to study singularities. We focus on the Segre-Veronese variety for which we completely classify their secants that give Gorenstein or $mathbb Q$-Gorenstein varieties. We conclude providing the explicit description of the singular locus.
Let $Xsubset mathbb{P}^r$ be an integral and non-degenerate variety. Let $sigma _{a,b}(X)subseteq mathbb{P}^r$, $(a,b)in mathbb{N}^2$, be the join of $a$ copies of $X$ and $b$ copies of the tangential variety of $X$. Using the classical Alexander-Hir
It is shown that an irreducible cubic hypersurface with nonzero Hessian and smooth singular locus is the secant variety of a Severi variety if and only if its Lie algebra of infinitesimal linear automorphisms admits a nonzero prolongation.
We study the proalgebraic space which is the inverse limit of all finite branched covers over a normal toric variety $X$ with branching set the invariant divisor under the action of $(mathbb{C}^*)^n$. This is the proalgebraic toric-completion $X_{mat
We give a characterization of all complete smooth toric varieties whose rational homotopy is of elliptic type. All such toric varieties of complex dimension not more than three are explicitly described.
We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relati